
A Monadic Framework for Bidirectional Programming

Li-yao Xia (École Normale Supérieure)

Programming with data under different representations is
a commonplace problem. The relationship between such
representations is most directly expressed using pairs of
mappings, called bidirectional transformations: a func-
tion and its inverse; parser and printer; getter and setter.
These transformations are often expected to satisfy con-
sistency properties, and missing them is a frequent source
of bugs.

To ease the programming of bidirectional transformations,
various frameworks have been proposed. A general ap-
proach many of these proposals take is the design of a
set of combinators which guarantee the good behavior of
composite transformations. [3–7]

Designers naturally strive for types and combinators
which are similar to or match common abstractions. In
particular, monads are known to model various sorts of
computations, and syntactic support such as Haskell’s
do-notation gives monads a rather ergonomic interface.

However, at first glance, it does not seem possible to
adapt monads and similar concepts to bidirectional trans-
formations: bidirectionality typically implies invariance,
whereas monads must be covariant functors. A common
workaround is to redefine existing concepts in a bidi-
rectional setting. In Haskell for instance, Rendel and
Ostermann [7] replace the Functor typeclass, actually
representing functors from a category of functions, with
functors from some category of isomorphisms.

By contrast, I propose a way to work directly with existing
abstractions by modelling bidirectional computations as
monadic profunctors: types p with two parameters, which
are contravariant functors on the first and monads on the
second, i.e., we can implement the following signatures:

(=.) :: (y -> x) -> p x a -> p y a
return :: a -> p x a
(>>=) :: p x a -> (a -> p x b) -> p x b

In Haskell, return and (>>=) belong to the Monad type-
class, from the standard library base. The operator
(=.) corresponds to lmap from the Profunctor type-
class, which is extensively used by the lens library in
particular.

Below is a particularly interesting type, which combines
two unidirectional computations into a bidirectional one.

data Codec g p x a = Codec
{ get :: g a
, put :: x -> p a }

instance (Functor g, Functor p)
=> Profunctor (Codec g p)

instance (Monad g, Monad p)
=> Monad (Codec g p x)

It is a variation of a type found in the codec library in
Haskell, which we borrowed the name of[2]. The occur-
rence of a in the put component turns out to be crucial
for this type to be a Monad and thus for the expressiveness
of Codec.

For example, we can use it to represent a composable
pair of parser and printer:

type PPCodec x a = Codec Parser Printer x a
data Parser a = Parser (String -> (String, a))
data Printer a = Printer (String, a)

Given a primitive to parse/print tokens,

data Token = Op Char | Lit Int

token :: PPCodec Token Token

we may define the following parser/printer for expressions
of binary operations in prefix notation. It takes the shape
of a monadic parser, and (=.) provides complementary
mappings for the printer which can thus use the same

1

definition.

data Exp = BinOp Char Exp Exp | Val Int

exp :: PPCodec Exp Exp
exp = do

t <- leadToken =. token
case t of

Op c -> BinOp c
<$> (operand1 =. exp)
<*> (operand2 =. exp)

Lit n -> return (Val n)

leadToken (BinOp c _ _) = Op c
leadToken (Val n) = Int n

operand1 (BinOp _ e _) = e
operand2 (BinOp _ _ e) = e

Lenses are a general kind of bidirectional transformation
we may also represent as a Codec. They are traditionally
defined with the following type:

data Lens s v = Lens
{ get :: s -> v
, put :: v -> s -> s }

After separating the positive and negative positions of
the variable v, we obtain Codec (Reader s) (State s).
Below is a simplified equivalent type:

data CodecLens s v w = CodecLens
{ get :: s -> w
, put :: v -> s -> (s, w) }

We may compose such lenses monadically like we did
earlier for printers/parsers. This also extends a previous
proposal to program lenses in applicative style [5].

In addition to parsers/printers and lenses, the abstract-
ness of monadic profunctors suggests that they may fit
well with various other bidirectional frameworks.

I am investigating the practicability of programming with
monadic profunctors. Early experimentation finds that
they enable the composition of bidirectional transfor-
mations in rich and general ways from domain-specific
primitives.

[1] Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna,
J. and Stevens, P. 2015. Notions of bidirectional com-
putation and entangled state monads. Mathematics of
program construction (June 2015).

[2] Chilton, P. 2015. codec: First-class record construction
and bidirectional serialization. http://hackage.haskell.
org/package/codec.

[3] Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce,
B.C. and Schmitt, A. 2005. Combinators for bi-directional
tree transformations: A linguistic approach to the view
update problem. Proceedings of the 32Nd acm sigplan-
sigact symposium on principles of programming languages
(New York, NY, USA, 2005), 233–246.

[4] Kennedy, A.J. 2004. FUNCTIONAL pearl pickler
combinators. J. Funct. Program. 14, 6 (Nov. 2004),
727–739.

[5] Matsuda, K. and Wang, M. 2015. Applicative bidi-
rectional programming with lenses. Proceedings of the
20th acm sigplan international conference on functional
programming (New York, NY, USA, 2015), 62–74.

[6] Pacheco, H., Hu, Z. and Fischer, S. 2014. Monadic
combinators for “putback” style bidirectional program-
ming. Proceedings of the acm sigplan 2014 workshop on
partial evaluation and program manipulation (New York,
NY, USA, 2014), 39–50.

[7] Rendel, T. and Ostermann, K. 2010. Invertible syntax
descriptions: Unifying parsing and pretty printing. Pro-
ceedings of the third acm haskell symposium on haskell
(New York, NY, USA, 2010), 1–12.

2

http://hackage.haskell.org/package/codec
http://hackage.haskell.org/package/codec

