
Composing bidirectional programs monadically

Li-yao Xia1, Dominic Orchard2, and Meng Wang3

1 University of Pennsylvania
2 University of Kent

3 University of Bristol

Abstract. Software frequently converts data from one representation
to another and vice versa. Naïvely specifying both conversion direc-
tions separately is error prone and introduces conceptual duplication. In-
stead, bidirectional programming techniques allow programs to be written
which can be interpreted in both directions. However, these techniques
often employ programming idioms that are alien to non-experts, via re-
stricted, specialised combinator libraries. Instead, we introduce a frame-
work for composing bidirectional programs monadically, enabling bidi-
rectional programming with familiar abstractions in functional languages
such as Haskell. We demonstrate the generality of our approach applied
to parsers/printers, lenses, and generators/predicates. We show how to
leverage compositionality and equational reasoning for the verification of
round-tripping properties for such monadic bidirectional programs.

1 Introduction

A bidirectional transformation (BX) is a pair of mutually related mappings be-
tween source and target data objects. A well-known example solves the view-
update problem [? ] from relational database design: a view is a derived database
table, computed from concrete source tables by a query. The problem is to map
an update of the view back to a corresponding update on the source tables. This
is captured by a bidirectional transformation. The bidirectional pattern is found
in a broad range of applications, including parsing [? ? ], refactoring [? ], code
generation [? ? ], and model transformation [? ].

When programming a bidirectional transformation, one can separately con-
struct the forwards and backwards functions. However, this approach duplicates
effort, is prone to error, and causes subsequent maintenance issues. These prob-
lems can be avoided by using specialised programming languages that generate
both directions from a single definition [? ? ? ], a discipline known as bidirectional
programming.

The most well-known language family for BX programming is lenses [? ].
A lens captures transformations between sources S and views V via a pair of
functions get : S → V and put : V → S → S. The get function extracts a view
from a source and put takes an updated view and a source as inputs to produce
an updated source. The asymmetrical nature of get and put makes it possible to
recover some of the source data that is not present in the view. In other words,
get does not have to be injective to have a corresponding put.



Bidirectional transformations typically respect round-tripping laws, captur-
ing the extent to which the transformations preserve information between the
two data representations. For example, well-behaved lenses [? ? ] should satisfy:

put (get s) s = s get (put v s) = v

Lens languages are conventionally designed to enforce these properties. This
focus on unconditional correctness inevitably leads to reduced practicality in
programming: lens combinators are typically stylised and disconnected from es-
tablished programming idioms. In this paper, we instead focus on expressing
bidirectional programs directly, using monads as an interface for sequential com-
position. Monads are a popular pattern [? ], sitting on top of the Haskell’s func-
tor/applicative/monad framework, which combinator libraries in other domains
routinely exploit. By introducing monadic composition to BX programming, it
not only significantly expands the expressiveness of BX languages, but also opens
up a route for programmers to explore the connection between BX programming
and mainstream uni-directional programming. Moreover, it appears that many
applications of bidirectional transformations (e.g., parsers and printers [? ]) do
not share the lens get/put pattern, and as a result have not been sufficiently
explored. However, monadic composition is known to be an effective way to
construct at least one direction of such transformations (e.g., parsers).

Contributions In this paper, we deliberately avoid the well-tried approach of
specialised lens languages, instead exploring a novel point in the BX design space
based on monadic programming, naturally reusing host language constructs. We
revisit lenses, and two more bidirectional patterns, demonstrating how they can
be subject to programming monadically. By being uncompromising about the
monad interface, we expose the essential ideas behind our framework whilst
maximising its usability. The trade off with our approach is that we can no
longer enforce correctness in the same way as conventional lenses: our interface
does not rule out all non-round-tripping BXs. We tackle this issue by proposing
a new compositional reasoning framework that is flexible enough to characterise
a variety of round-tripping properties, and simplifies the necessary reasoning.

Specifically, we make the following contributions:

– We describe a method to enable monadic composition for bidirectional pro-
grams (Section 3). Our approach is based on a construction which generates a
monadic profunctor, parameterised on two application-specific monads which
are used to generate the forward (Fwd) and backward (Bwd) directions.

– To demonstrate the flexibility of our approach, we apply the above method
to three different problem domains: parsers/printers (Section 3 and 4), lenses
(Section 5), and generators/predicates for structured data (Section 6). While
the first two are well-explored areas in the bidirectional programming litera-
ture, the third one is a completely new application domain.

– We present a scalable reasoning framework, capturing notions of composi-
tionality for bidirectional properties (Section 4). We define classes of round-
tripping properties inherent to bidirectionalism, which can be verified by fol-



lowing simple criteria. These principles are demonstrated with our three exam-
ples. We include some proofs for illustration in the paper. The supplementary
material [? ] contains machine-checked Coq proofs for the main theorems.

– We have implemented these ideas as Haskell libraries [? ], with two wrappers
around attoparsec for parsers and printers, and QuickCheck for generators and
predicates, showing the viability of our approach for real programs.

We use Haskell for concrete examples, but the programming patterns can be
easily expressed in many functional languages. We use the Haskell notation of
assigning type signatures to expressions via an infix double colon “ ::”.

1.1 Background

We introduced lenses briefly above. We now introduce the other two bidirectional
examples used in this paper: parsers/printers and generators/predicates.

Parsing and printing Programming language tools (such as interpreters, com-
pilers, and refactoring tools) typically require two intimately linked components:
parsers and printers, respectively mapping from source code to ASTs and back.
A simple implementation of these two functions have the types:

parser :: String → AST printer :: AST → String

Parsers and printers are rarely actual inverses to each other, but instead typically
exhibit a variant of round-tripping such as:

parser ◦ printer ◦ parser ≡ parser printer ◦ parser ◦ printer ≡ printer

The left equation describes the common situation that parsing discards informa-
tion about source code, such as whitespace, so that printing the resulting AST
does not recover the original source. However, printing retains enough informa-
tion such that parsing the printed output yields an AST which is equivalent to
the AST from parsing the original source. The right equation describes the dual:
printing may map different ASTs to the same string. For example, printed code
1 + 2 + 3 might be produced by left- and right-associated syntax trees.

For particular AST subsets, printing and parsing may actually be left- or
right- inverses to each other. Other characterisations are also possible, e.g., with
equivalence classes of ASTs (accounting for reassociations). Alternatively, parsers
and printers may satisfy properties about the interaction of partially-parsed
inputs with the printer and parser, e.g., if parser :: String → (AST, String):

(let (x, s’) = parser s in parser ((printer x) ++ s’)) ≡ parser s

Thus, parsing and printing follows a pattern of inverse-like functions which does
not fit the lens paradigm. The pattern resembles lenses between a source (source
code) and view (ASTs), but with a compositional notion for the source and par-
tial “gets” which consume some of the source, leaving a remainder.

Writing parsers and printers by hand is often tedious due to the redundancy
implied by that inverse-like relation. Thus, various approaches have previously
been proposed specifically for reducing the effort of developing parsers/printers,
by generating both from a common definition [? ? ? ].



Generating and checking Property-based testing (e.g., QuickCheck) [? ] ex-
presses program properties as executable predicates. For instance, the follow-
ing property checks that an insertion function insert, given a sorted list — as
checked by the predicate isSorted :: [Int] → Bool — produces another sorted
list. The combinator =⇒ represents implication for properties.

propInsert :: Int → [Int] → Property
propInsert val list = isSorted list =⇒ isSorted (insert val list)

To test it, a testing framework generates random inputs val and list. It first
checks whether list is sorted, and if it is, checks that insert val list is sorted
as well; this process is repeated until either a counterexample is found or a
predetermined number of test cases pass.

However, this naïve method is inefficient: many properties such as propInsert
have preconditions which are satisfied by an extremely small fraction of inputs. In
this case, the ratio of sorted lists among lists of length n is inversely proportional
to n!, so most generated inputs will be discarded for not satisfying the isSorted

precondition. Such tests give no information about the validity of the predicate
being tested and thus are prohibitively inefficient.

When too many inputs are being discarded, the user must instead supply
the framework with custom generators of values satisfying the precondition:
genSorted :: Gen [Int].

One can expect two complementary properties of such a generator. A gener-
ator is sound with respect to the predicate isSorted if it generates only values
satisfying isSorted; soundness means that no tests are discarded, hence the prop-
erty to test is better exercised. A generator is complete with respect to isSorted

if it can generate all satisfying values; completeness ensures the correctness of
testing a property with isSorted as a precondition, in the sense that if there
is a counterexample, it will be generated eventually. In this setting of testing,
completeness, which affects the potential adequacy of testing, is arguably more
important than soundness, which affects only efficiency.

It is clear that generators and predicates are closely related, forming a pat-
tern similar to that of bidirectional transformations. Given that good generators
are usually difficult to construct, being able to extract both from a common
specification with bidirectional programming is a very attractive alternative.

Roadmap We begin by outlining a concrete example of parsers and printers (Sec-
tion 2), before explaining the general approach of using monadic profunctors to
structure bidirectional programs (Section 3). Section 4 then presents a compo-
sitional reasoning framework for monadic bidirectional programs, with varying
degrees of strength adapted to different round-tripping properties. We then re-
play the developments of the earlier sections to define lenses as well as generators
and predicates in Sections 5 and 6.



2 Monadic bidirectional programming

A bidirectional parser, or biparser, combines both a parsing direction and print-
ing direction. Our first novelty here is to express biparsers monadically.

In code samples, we use the functional programming pun of naming variables
after their types, e.g., a variable of some polymorphic type v will also be called
v. Similarly, for some parametric type m, a variable of type m v will be called mv

and a function u → m v (a Kleisli arrow for a monad m) will be called kv.

Monadic parsers The following data type provides the standard way to describe
parsers of values of type v which may consume only part of the input string:

data Parser v = Parser { parse :: String → (v, String) }

It is well-known that such parsers are monadic [? ], i.e., they have a notion of
monadic sequential composition embodied by the interface:

instance Monad Parser where
(>>=) :: Parser v → (v → Parser w) → Parser w
return :: v → Parser v

The sequential composition operator (>>=), called bind, describes the scheme
of constructing a parser by sequentially composing two sub-parsers where the
second depends on the output of the first; a parser of w values is made up of a
parser of v and a parser of w that depends on the previously parsed v. Indeed,
this is the implementation given to the monadic interface:

pv >>= kw = Parser (λs → let (v, s’) = parse pv s in parse (kw v) s’)
return v = Parser (λs → (v, s))

Bind first runs the parser pv on an input string s, resulting in a value v which is
used to create the parser kw v, which is in turn run on the remaining input s’

to produce parsed values of type w. The return operation creates a trivial parser
for any value v which does not consume any input but simply returns v.

Usually two monadically composed parsers have a relationship between the
first parser’s type and the second parser’s type, and that relationship is usually
containment of the former inside the latter. For example, we might parse an ex-
pression and compose this with a parser for statements, where statements contain
expressions. This relationship will be useful later when we consider printers.

As a shorthand, we can discard the remaining unparsed string of a parser us-
ing projection, giving a helper function typed parser :: Parser v → (String → v).

Monadic printers Our goal is to augment parsers with their inverse printer,
such that we have a monadic type Biparser which provides two complementary
(bi-directional) transformations:

parser :: Biparser v → (String → v)
printer :: Biparser v → (v → String)

However, this type of printer v → String (shown also in the introduction) cannot
form a monad because it is contravariant in its type parameter v. Concretely, we
cannot implement the bind (>>=) operator for values with types of this form:



-- Failed attempt
bind :: (v → String) → (v → (w → String)) → (w → String)
bind pv kw = λw → let v = (??) in pv v ++ kw v w

We are stuck trying to fill the hole (??) as there is no way to get a value of
type v to pass as an argument to pv (first printer) and kw (second printer which
depends on a v). Subsequently, we cannot leverage the result that the product of
two monads is a monad by taking a product of the parser monad and v → String.

But what if our types were related by containment, such that v is contained
within w and thus we have a projection w → v? We could use this projection to
fill the hole in the failed attempt above, defining a bind-like operator:

bind’ :: (w → v) → (v → String) → (v → (w → String)) → (w → String)
bind’ from pv kw = λw → let v = from w in pv v ++ kw v w

This is closer to the monadic form, where from :: w → v resolves the difficulty
of contravariance by “contextualizing” the printers. Thus, the first printer is no
longer just “a printer of v”, but “a printer of v extracted from w”. In the context
of constructing a bidirectional parser, having such a function to hand is not an
unrealistic expectation: recall that when we compose two parsers, typically the
values of the first parser for v are contained within the values returned by the
second parser for w, thus a notion of projection can be defined and used here to
recover a v in order to build the corresponding printer compositionally.

Of course, this is still not a monad. However, it suggests a way to generate
a monadic form by putting the printer and contextualizing projection together,
(w → v, v → String) and fusing them into (w → (v, String)). This has the
advantage of removing the contravariant occurence of v, yielding a data type:

data Printer w v = Printer { runPrinter :: w → (v, String) }

If we fix the first parameter type w, then the type Printer w of printers for w

values is indeed monadic, combining a reader monad (for some global read-only
parameter of type w) and a writer monad (for strings), with implementation:

instance Monad (Printer w) where
return :: v → Printer w v
return = λv → Printer (λ_ → (v, ""))

(>>=) :: Printer w v → (v → Printer w t) → Printer w t
pv >>= kt = Printer (λw → let (v, s) = print pv w

(t, s’) = print (kt v) w in (t, s ++ s’))

The printer return v ignores its input and prints nothing. For bind, an input w

is shared by both printers and the resulting strings are concatenated.
We can adapt the contextualisation of a printer by the following operation

which amounts to pre-composition, witnessing the fact that Printer is a con-
travariant functor in its first parameter:

comap :: (w → w’) → Printer w’ v → Printer w v
comap from (Printer f) = Printer (f ◦ from)



2.1 Monadic biparsers

So far so good: we now have a monadic notion of printers. However, our goal is to
combine parsers and printers in a single type. Since we have two monads, we use
the standard result that a product of monads is a monad, defining biparsers:

data Biparser u v = Biparser { parse :: String → (v, String)
, print :: u → (v, String) }

By pairing parsers and printers we have to unify their covariant parameters.
When both type parameters are the same it is easy to interpret this type: a
biparser Biparser v v is a parser from strings to v values and printer from v

values to strings. We refer to biparsers of this type as aligned biparsers. What
about when the type parameters differ? A biparser of type Biparser u v pro-
vides a parser from strings to v values and a printer from u values to strings,
but where the printers can compute v values from u values, i.e., u is some com-
mon broader representation which contains relevant v-typed subcomponents. A
biparser Biparser u v can be thought of as printing a certain subtree v from the
broader representation of a syntax tree u.

The corresponding monad for Biparser is the product of the previous two
monad definitions for Parser and Printer, allowing both to be composed sequen-
tially at the same time. To avoid duplication we elide the definition here which
is shown in full in Appendix A.

We can also lift the previous notion of comap from printers to biparsers, which
gives us a way to localize (contextualize) a printer:

comap :: (u → u’) → Biparser u’ v → Biparser u v
comap f (Biparser parse print) = Biparser parse (print ◦ f)

upon :: Biparser u’ v → (u → u’) → Biparser u v
upon = flip comap

In the rest of this section, we use the alias upon for comap with flipped parameters
where we read p ‘upon‘ subpart as applying the printer of p :: Biparser u’ v on
a subpart of an input of type u calculated by subpart :: u → u’, thus yielding a
biparser of type Biparser u v.

An example biparser Let us write a biparser, string :: Biparser String String,
for strings which are prefixed by their length and a space. For example, the
following unit tests should be true:

test1 = parse string "6␣lambda␣calculus" == ("lambda", "␣calculus")
test2 = print string "SKI" == ("3␣SKI", "SKI")

We start by defining a primitive biparser of single characters as:

char :: Biparser Char Char
char = Biparser (λ (c : s) → (c, s)) (λ c → (c, [c]))

A character is parsed by deconstructing the source string into its head and tail.
For brevity, we do not handle the failure associated with an empty string. A
character c is printed as its single-letter string (a singleton list) paired with c.



Next, we define a biparser int for an integer followed by a single space. An
auxiliary biparser digits (on the right) parses an integer one digit at a time into
a string. Note that in Haskell, the do-notation statement “d ← char ‘upon‘ head”
desugars to “char ‘upon‘ head >>= λ d → . . . ” which uses (>>=) and a function
binding d in the scope of the rest of the desugared block.

int :: Biparser Int Int
int = do

ds ← digits ‘upon‘ printedInt
return (read ds)
where

printedInt n = show n ++ "␣"

digits :: Biparser String String
digits = do

d ← char ‘upon‘ head
if isDigit d then do

igits ← digits ‘upon‘ tail
return (d : igits)

else if d == ’ ’ then return "␣"
else error "Expected␣digit␣or␣space"

On the right, digits extracts a String consisting of digits followed by a single
space. As a parser, it parses a character (char ‘upon‘ head); if it is a digit then it
continues parsing recursively (digits ‘upon‘ tail) appending the first character
to the result (d : igits). Otherwise, if the parsed character is a space the parser
returns "␣". As a printer, it expects a string of the same format, which must be
non-empty; ‘upon‘ head extracts the first character of the input, then char prints
it and returns it back as d; if it is a digit, then ‘upon‘ tail extracts the rest of
the input to print recursively. If the character is a space, the printer returns a
space and terminates; otherwise (not digit or space) the printer throws an error.

On the left, the biparser int uses read to convert an input string of digits
parsed by digits to an integer, and printedInt to convert an integer to an output
string printed by digits. A safer implementation could return the Maybe type
when parsing but we keep things simple here for now.

After parsing an integer n, we can parse the string following it by iterating
n times the biparser char. This is captured by the replicateBiparser combinator
below, defined recursively like digits but with the termination condition given
by an external parameter. To iterate n times a biparser pv: if n == 0, there is
nothing to do and we return the empty list; otherwise for n > 0, we run pv once
to get the head v, and recursively iterate n-1 times to get the tail vs.

Note that although not reflected in its type, replicateBiparser n pv expects,
as a printer, a list l of length n: if n == 0, there is nothing to print; if n > 0,
‘upon‘ head extracts the head of l to print it with pv, and ‘upon‘ tail extracts
its tail, of length n-1, to print it recursively.

replicateBiparser :: Int → Biparser u v → Biparser [u] [v]
replicateBiparser 0 pv = return []
replicateBiparser n pv = do

v ← pv ‘upon‘ head
vs ← (replicateBiparser (n - 1) pv) ‘upon‘ tail
return (v : vs)

(akin to replicateM from Haskell’s standard library). We can now fulfil our task:
string :: Biparser String String
string = int ‘upon‘ length >>= λn → replicateBiparser n char



Interestingly, if we erase applications of upon, i.e., we substitute every expression
of the form py ‘upon‘ f with py and ignore the second parameter of the types,
we obtain what is essentially the definition of a parser in an idiomatic style for
monadic parsing. This is because ‘upon‘ f is the identity on the parser compo-
nent of Biparser. Thus the biparser code closely resembles standard, idiomatic
monadic parser code but with “annotations” via upon expressing how to apply
the backwards direction of printing to subparts of the parsed string.

Despite its simplicity, the syntax of length-prefixed strings is notably context-
sensitive. Thus the example makes crucial use of the monadic interface for bidi-
rectional programming: a value (the length) must first be extracted to dynam-
ically delimit the string to be parsed next. Context-sensitivity is standard for
parser combinators in contrast with parser generators, e.g., Yacc, and applicative
parsers, which are mostly restricted to context-free languages. By our monadic
BX approach, we can now bring this power to bear on bidirectional parsing.

3 A unifying structure: monadic profunctors

The biparser examples of the last section were enabled by both the monadic
structure of Biparser and the comap operation (also called upon, with flipped
arguments). We call types which have both a monadic structure and a comap

operation a monadic profunctor. The notion of a monadic profunctor is general,
but it characterises a key class of structures for bidirectional programs, which we
explain here. Furthermore, we show a construction of monadic profunctors from
pairs of monads which elicits the necessary structure for monadic bidirectional
programming in the style of the previous section.

Profunctors In Section 2.1, biparsers were defined by a data type with two
type parameters (Biparser u v) which is functorial and monadic in the second
parameter and contravariantly functorial in the first parameter (provided by
the comap operation). In standard terminology, a two-parameter type p which is
functorial in both its type parameters is called a bifunctor. In Haskell, the term
profunctor has come to mean any bifunctor which is contravariant in the first
type parameter and covariant in the second.4 This differs slightly to the standard
category theory terminology where a profunctor is a bifunctor F : Dop×C → Set.
The Haskell community’s use of the term “profunctor” makes sense if we treat
Haskell in an idealised way as the category of sets.

We adopt this programming-oriented terminology here, capturing the comap

operation via a class Profunctor. In the preceding section, some uses of comap

involved a partial function, e.g., comap head. We make the possibility of partiality
explicit via the Maybe type, yielding the following definition.

Definition 1. A binary data type is a profunctor if it is a contravariant functor
in its first parameter and covariant functor in its second, with the operation:

4 http://hackage.haskell.org/package/profunctors/docs/Data-Profunctor.html

http://hackage.haskell.org/package/profunctors/docs/Data-Profunctor.html


class ForallF Functor p ⇒ Profunctor p where
comap :: (u → Maybe u’) → p u’ v → p u v

which should obey two laws:

comap Just = id comap (f >=> g) = comap f ◦ comap g

where (>=>) is the (left-to-right) composition operator for Kleisli arrows of the
Maybe monad, i.e., composition of partial functions: (>=>) :: (a → Maybe b) →
(b → Maybe c) → a → Maybe c.

The constraint ForallF Functor p captures a universally quantified constraint
[? ]: for all types u then p u has an instance of the Functor class.5

Since the contravariant part of the bifunctor applies to functions of type
u → Maybe u’, the categorical analogy here is more precisely a profunctor F :
CT op×C → Set where CT is the Kleisli category of the partiality (Maybe) monad.

The need for comap to take partial functions is in response to the frequent need
to restrict the domain of bidirectional transformations. In combinator-based ap-
proaches, the combinators typically constrain bidirectional programs to be bijec-
tions, enforcing domain restrictions by construction. Our more flexible approach
means we need a way to include such restrictions explicitly– hence comap.

Definition 2. A monadic profunctor is a profunctor p (in sense of Defini-
tion 1) such that p u is a monad for all u. In terms of type class constraints,
this means there is an instance Profunctor p and for all u there is a Monad (p u)

instance. Thus, we represent monadic profunctors by the following empty class
(which inherits all its methods from its superclasses):

class (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Monadic profunctors must obey the following laws about the interaction between
cofunctor and monad operations:

comap f (return y) = return y
comap f (py >>= kz) = comap f py >>= (λ y → comap f (kz y))

These laws are equivalent to saying that comap lifts (partial) functions into monad
morphisms. In Haskell, these laws are obtained for free by parametricity [? ].
This means that every contravariant functor and monad is in fact a monadic
profunctor, thus the following universal instance is lawful:

instance (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Corollary 1. Biparsers form a monadic profunctor as there is an instance of
Monad (P u) and Profunctor p satisfying the requisite laws.

Lastly, we introduce a useful piece of terminology (mentioned in the previous
section on biparsers) for describing values of a profunctor of a particular form:

Definition 3. A value p :: P u v of a profunctor P is called aligned if u = v.
5 GHC will shortly allow universal quantification in its constraints, written as forall
u . Functor (p u), but until then we use the constraint constructor ForallF from
the constraints package: http://hackage.haskell.org/package/constraints.

http://hackage.haskell.org/package/constraints


3.1 Constructing monadic profunctors

Our examples (parsers/printers, lenses, and generators/predicates) share monadic
profunctors as an abstraction, making it possible to write different kinds of bidi-
rectional transformations monadically. Underlying these definitions of monadic
profunctors is a common structure, which we explain here using biparsers, and
which will be replayed in Section 5 for lenses and Section 6 for bigenerators.

There are two simple ways in which a covariant functor m (resp. a monad)
gives rise to a profunctor (resp. monadic profunctor). The first is by construct-
ing a profunctor in which the first contravariant parameter is discarded, i.e.,
p u v = m v; the second is as the function type from the contravariant parameter
u to m v, i.e., p u v = u → m v. These are standard mathematical constructions,
and the latter appears in the Haskell profunctors package with the name Star.
Our core construction is based on these two ways of creating a profunctor, which
we call Fwd and Bwd respectively:

data Fwd m u v = Fwd { unFwd :: m v } -- ignore contrv. parameter
data Bwd m u v = Bwd { unBwd :: u → m v } -- maps from contrv. parameter

The naming reflects the idea that these two constructions will together capture
a bidirectional transformation and are related by domain-specific round-tripping
properties in our framework. Both Fwd and Bwd map any functor into a profunctor
by the following type class instances:

instance Functor m ⇒ Functor (Fwd m u) where
fmap f (Fwd x) = Fwd (fmap f x)

instance Functor m ⇒ Profunctor (Fwd m) where
comap f (Fwd x) = Fwd x

instance Functor m ⇒ Functor (Bwd m u) where
fmap f (Bwd x) = Bwd ((fmap f) ◦ x)

instance (Monad m, MonadPartial m) ⇒ Profunctor (Bwd m) where
comap f (Bwd x) = Bwd ((toFailure ◦ f) >=> x)

There is an additional constraint here for Bwd, enforcing that the monad m is a
member of the MonadPartial class which we define as:

class MonadPartial m where toFailure :: Maybe a → m a

This provides an interface for monads which can internalise a notion of failure,
as captured at the top-level by Maybe in comap.

Furthermore, Fwd and Bwd both map any monad into a monadic profunctor:
instance Monad m

⇒ Monad (Fwd m u) where
return x = Fwd (return x)
Fwd py >>= kz =

Fwd (py >>= unFwd ◦ kz)

instance Monad m
⇒ Monad (Bwd m u) where

return x = Bwd (λ_ → return x)
Bwd my >>= kz = Bwd

(λu → my u >>= (λy → unBwd (kz y) u))

The product of two monadic profunctors is also a monadic profunctor. This
follows from the fact that the product of two monads is a monad and the product
of two contravariant functors is a contravariant functor.



data (:*:) p q u v = (:*:) { pfst :: p u v, psnd :: q u v }

instance (Monad (p u), Monad (q u)) ⇒ Monad ((p :*: q) u) where
return y = return y :*: return y
py :*: qy >>= kz = (py >>= pfst ◦ kz) :*: (qy >>= psnd ◦ kz)

instance (ForallF Functor (p :*: q), Profunctor p, Profunctor q)
⇒ Profunctor (p :*: q) where

comap f (py :*: qy) = comap f py :*: comap f qy

3.2 Deriving biparsers as monadic profunctor pairs

We can redefine biparsers in terms of the above data types, its instances, and
two standard monads, the state and writer monads:

type State s a = s → (a, s)
type WriterT w m a = m (a, w)
type Biparser = Fwd (State String) :*: Bwd (WriterT Maybe String)

The backward direction composes the writer monad with the Maybe monad using
WriterT (the writer monad transformer, equivalent to composing two monads
with a distributive law). Thus the backwards component of Biparser corresponds
printers (which may fail) and the forwards component to parsers:

Bwd (WriterT Maybe String) u v ∼= u → Maybe (v, String)

Fwd (State String) u v ∼= String → (v, String)

For the above code to work in Haskell, the State and WriterT types need to be
defined via either a data type or newtype in order to allow type class instances on
partially applied type constructors. We abuse the notation here for simplicity but
define smart constructors and deconstructors for the actual implementation:6

parse :: Biparser u v → (String → (v, String))
print :: Biparser u v → (u → Maybe (v, String))
mkBiparser :: (String → (v, String)) → (u → Maybe (v, String)) → Biparser u v

The monadic profunctor definition for biparsers now comes for free from the
constructions in Section 3.1 along with the following instance of MonadPartial for
the writer monad transformer with the Maybe monad:

instance Monoid w ⇒ MonadPartial (WriterT w Maybe) where
toFailure Nothing = WriterT Nothing
toFailure (Just a) = WriterT (Just (a, mempty))

In a similar manner, we will use this monadic profunctor construction to define
monadic bidirectional transformations for lenses (§5) and bigenerators (§6).

The example biparsers from Section 2.1 can be easily redefined using the
structure here. For example, the primitive biparser char becomes:

char :: Biparser Char Char
char = mkBiparser (λ (c : s) → (c, s)) (λ c → Just (c, [c]))

6 Smart constructors (and dually smart deconstructors) are just functions that hide
boilerplate code for constructing and deconstructor data types.



Codec library The codec library [? ] provides a general type for bidirectional
programming isomorphic to our composite type Fwd r :*: Bwd w:

data Codec r w c a = Codec { codecIn :: r a, codecOut :: c → w a }

Though the original codec library was developed independently, its current form
is a result of this work. Particularly, we contributed to the package by generalising
its original type (with codecOut :: c → w ()) to the one above, and provided
Monad and Profunctor instances to support monadic bidirectional programming
with codecs.

4 Reasoning about bidirectionality

So far we have seen how the monadic profunctor structure provides a way to
define biparsers using familiar operations and syntax: monads and do-notation.
This structuring allows both the forwards and backwards components of a bi-
parser to be defined simultaneously in a single compact definition.

This section studies the interaction of monadic profunctors with the round-
tripping laws that relate the two components of a bidirectional program. For
every bidirectional transformation we can define dual properties: backward round
tripping (going backwards-then-forwards) and forward round tripping (going
forwards-then-backwards). In each BX domain, such properties will also cap-
ture the domain-specific information flow inherent to the transformations. We
use biparsers as the running example. We then apply the same principles to our
other examples in Sections 5 and 6. For brevity, we use Bp as an alias for Biparser.

Definition 4. A biparser p :: Bp u u is backward round tripping if for all x :: u

and s, s’ :: String then: (recall print p :: u → Maybe (v, String))

fmap snd (print p x) = Just s =⇒ parse p (s ++ s’) = (x, s’).

That is, if a biparser p when used as a printer (going backwards) on an input
value x produces a string s, then using p as a parser on a string with prefix s

and suffix s’ yields the original input value x and the remaining input s’.
Note that backward round tripping is defined for aligned biparsers (of type

Bp u u) since the same value x is used as both the input of the printer (typed by
the first type parameter of Bp) and as the expected output of the parser (typed
by the second type parameter of Bp).

The dual property is forward round tripping: a source string s is parsed (going
forwards) into some value x which when printed produces the initial source s:

Definition 5. A biparser p :: Bp u u is forward round tripping if for every x :: u

and s :: String we have that:

parse p s = (x, "") =⇒ fmap snd (print p x) = Just s

Proposition 1 The biparser char :: Bp Char Char (§3.2) is both backward and
forward round tripping. Proof by expanding definitions and algebraic reasoning.



Note, in some applications, forward round tripping is too strong. Here it
requires that every printed value corresponds to at most one source string. This
is often not the case as ASTs typically discard formatting and comments so that
pretty-printed code is lexically different to the original source. However, different
notions of equality enable more reasonable forward round-tripping properties.

Although one can check round-tripping properties of biparsers by expand-
ing their definitions and the underlying monadic profunctor operations, a more
scalable approach is provided if a round-tripping property is compositional with
respect to the monadic profunctor operations, i.e., if these operations preserve
the property. Compositional properties are easier to enforce and check since only
the individual atomic components need round-tripping proofs. Such properties
are then guaranteed “by construction” for programs using those components.

4.1 Compositional properties of monadic bidirectional programming

Let us first formalize compositionality as follows. A property R over a monadic
profunctor P is a family of subsets Ru

v of P u v indexed by types u and v.

Definition 6. A property R over a monadic profunctor P is compositional if the
monadic profunctor operations are closed over R, i.e., the following conditions
hold for all types u, v, w:

1. For all x :: v, (return x) ∈ Ru
v (comp-return)

2. For all p :: P u v and k :: v → P u w,(
p ∈ Ru

v
)
∧

(
∀v. (k v) ∈ Ru

w
)

=⇒ (p >>= k) ∈ Ru
w (comp-bind)

3. For all p :: P u’ v and f :: u → Maybe u’,
p ∈ Ru’

v =⇒ (comap f p) ∈ Ru
v (comp-comap)

Unfortunately for biparsers, forward and backward round tripping as defined
above are not compositional: return is not backward round tripping and >>=

does not preserve forward round tripping. Furthermore, these two properties are
restricted to biparsers of type Bp u u (i.e., aligned biparsers) but compositionality
requires that the two type parameters of monadic profunctor can differ in the
case of comap and (>>=). This suggests that we need to look for more general
properties that capture the full gamet of possible biparsers.

We first focus on backward round tripping. Informally, backward round trip-
ping states that if you print (going backwards) and parse the resulting output
(going forwards) then you get back the initial value. However, in a general bi-
parser p :: Bp u v, the input type of the printer u differs from the output type of
the parser v, so we cannot compare them. But our intent for printers is that what
we actually print is a fragment of u, a fragment which is given as the output of
the printer. By thus comparing the outputs of both the parser and printer, we
obtain the following variant of backward round tripping:

Definition 7. A biparser p :: Bp u v is weak backward round tripping if for all
x :: u, y :: v, and s, s’ :: String then:

print p x = Just (y, s) =⇒ parse p (s ++ s’) = (y, s’)



Removing backward round-tripping’s restriction to aligned biparsers and using
the result y :: v of the printer gives us a property that is compositional:

Proposition 2 Weak backward round tripping of biparsers is compositional.

Proposition 3. The primitive biparser char is weak backward round tripping.

Corollary 2. Propositions 2 & 3 imply string is weak backward round tripping.

This property is “weak” as it does not constrain the relationship between the in-
put u of the printer and its output v. In fact, there is no hope for a compositional
property to do so: the monadic profunctor combinators do not enforce a rela-
tionship between them. However, we can regain compositionality for the stronger
backward round-tripping property by combining the weak compositional prop-
erty with an additional non-compositional property on the relationship between
the printer’s input and output. This relationship is represented by the function
that results from ignoring the printed string, which amounts to removing the
main effect of the printer. Thus we call this operation a purification:

purify :: forall u v. Bp u v → u → Maybe v
purify p u = fmap fst (print p u)

Ultimately, when a biparser is aligned (p :: Bp u u) we want an input to the
printer to be returned in its output, i.e, purify p should equal λx → Just x. If
this is the case, we recover the original backward round tripping property:

Theorem 1 If p :: P u u is weak backward round tripping, and for all x :: u.
purify p x = Just x, then p is backward round tripping.

Thus, for any biparser p, we can get backward round tripping by proving that
its atomic subcomponents are weak backward round tripping, and proving that
purify p x = Just x. The interesting aspect of the purification condition here is
that it renders irrelevant the domain-specific effects of the biparser, i.e., those
related to manipulating source strings. This considerably simplifies any proof.
Furthermore, the definition of purify is a monadic profunctor homomorphism
which provides a set of equations that can be used to expedite the reasoning.

Definition 8. Amonadic profunctor homomorphism between monadic profunc-
tors P and Q is a polymorphic function proj :: P u v → Q u v such that:

proj (comapP f p) ≡ comapQ f (proj p)

proj (p >>=P k) ≡ (proj p) >>=Q (λx → proj (k x))

proj (returnP x) ≡ returnQ x

Proposition 4. The purify :: Bp u v → u → Maybe v operation for biparsers is
a monadic profunctor homomorphism between Bp and the monadic profunctor
PartialFun u v = u → Maybe v.

Corollary 3. (of Theorem 1 with Corollary 2 and Proposition 4) The biparser
string is backward round tripping.



Proof. First prove (in Appendix B) the following properties of biparsers char,
int, and replicatedBp :: Int → Bp u v → Bp [u] [v] (writing proj for purify):

proj char n ≡ Just n (4.1)
proj int n ≡ Just n (4.2)

proj (replicateBp (length xs) p) xs ≡ mapM (proj p) xs (4.3)

From these and the homomorphism properties we can prove proj string = Just:

proj string xs

≡ proj (comap length int >>= λn → replicateBp n char) xs

Prop.4 ≡ (comap length (proj int) >>= λn → proj (replicateBp n char)) xs

(4.2) ≡ (comap length Just >>= λn → proj (replicateBp n char)) xs

Def.2 ≡ proj (replicateBp (length xs) char) xs

(4.3) ≡ mapM (proj char) xs

(4.1) ≡ mapM Just xs

{monad} ≡ Just xs

Combining proj string = Just with Corollary 2 (string is weak backward round
tripping) enables Theorem 1, giving that string is backward round tripping.

The other two core examples in this paper also permit a definition of purify.
We capture the general pattern as follows:

Definition 9. A purifiable monadic profunctor P is a monadic profunctor equipped
with a homomorphism proj from P to the partial functions monadic profunctor
- → Maybe -. We say that proj p is the pure projection of p.

Definition 10. A pure projection proj p :: u → Maybe v is called the identity
projection when proj p x = Just x for all x :: u.

Here and in Sections 5 and 6, identity projections enable compositional round-
tripping properties to be derived from more general non-compositional proper-
ties, as seen above for backward round tripping of biparsers.

We have neglected forward round tripping, which is not compositional, not
even in an a weakened form. However, we can generalize compositionality with
conditions related to injectivity, enabling a generalisation of forward round trip-
ping. We call the generalized meta-property quasicompositionality.

4.2 Quasicompositionality for monadic profunctors

An injective function f : A→ B is a function for which there exists a left inverse
f−1 : B → A, i.e., where f−1 ◦ f = id. We can see this pair of functions as
a simple kind of bidirectional program, with a forward round-tripping property
(assuming f is the forwards direction). We can lift the notion of injectivity to
the monadic profunctor setting and capture forward round-tripping properties
that are preserved by the monadic profunctor operations, given some additional
injectivity-like restriction. We first formalise the notion of an injective arrow :



Definition 11. Let m be a monad. A function k :: v → m w is an injective arrow
if there exists k’ :: w → v (called the left arrow inverse of k) and for all x :: v:

k x >>= λy → return (x, y) ≡ k x >>= λy → return (k’ y, y)

Informally, an injective arrow represents a computation producing an output y

from which the “header” x that is an input to the arrow can be extracted back.
Next, we define quasicompositionality which extends the compositionality

meta-property with the requirement for >>= to be applied to injective arrows:

Definition 12. Let P be a monadic profunctor. A property Ru
v ⊆ P u v indexed

by types u and v is quasicompositional if the following holds

1. For all x :: v, (return x) ∈ Ru
v (qcomp-return)

2. For all p :: P u v, k :: v → P u w, if k is an injective arrow,
p ∈ Ru

v ∧ (∀v. k v ∈ Ru
w) =⇒ (p >>= k) ∈ Ru

w (qcomp-bind)

3. For all p :: P u’ v, f :: u → Maybe u’,
p ∈ Ru’

v ∧ =⇒ (comap f p) ∈ Ru
w (qcomp-bind)

We now formulate a weakening of forward round tripping. As with weak back-
ward round tripping, we rely on the idea that the printer outputs both a string
and the value that was printed, so that we need to compare the outputs of both
the parser and the printer, as opposed to comparing the output of the parser
with the input of the printer as in (strong) forward round tripping. If running the
parser component of a biparser on a string s01 yields a value y and a remaining
string s1, and the printer ever outputs that same value y along with a string s0,
then s0 is the prefix of s01 that was consumed by the biparser: s01 = s0 ++ s1.

Definition 13. A biparser p : Bp u v is weak forward round tripping if for all
x :: u, y :: v, and s0, s1, s01 :: String then:

parse p s01 = (y, s1) ∧ print p x = Just (y, s0) =⇒ s01 = s0 ++ s1

Proposition 5. Weak forward round tripping is quasicompositional.

Proof. We sketch the qcomp-bind case, where p = (m >>= k) for some m and k that
are weak forward roundtripping. From parse (m >>= k) s01 = (y, s1), it follows
that there exists (z, s) such that parse m s01 = (z, s) and parse (k z) s = (y, s1).
Similarly print (m >>= k) x = Just (y, s’) implies there exist z’, s0’ such that
print m x = Just (z’, s0’) and print (k z’) x = Just (y, s1’) and s = s0’ ++ s1’.
Because k is an injective arrow, we have z = z’. Thus we can use the assumption
that m and k are weak forward roundtripping once on m and once on k a, and
deduce that s01 = s0’ ++ s and s = s1’ ++ s1. Conclude with a bit of algebra.

Proposition 6. The char biparser is weak forward round tripping.

Corollary 4. Propositions 5 and 6 imply that string is weak forward round
tripping if we restrict the parser to inputs whose digits do not contain redundant
leading zeros.



Proof. All of the right operands of >>= in the definition of string are injective ar-
rows, apart from λds → return (read ds) at the end of the auxiliary int biparser.
Indeed, the read function is not injective since multiple strings may parse to the
same integer: read "0" = read "00" = 0. But the pre-condition to the proposi-
tion (no redundant leading zero digits) restricts the input strings so that read is
injective. The rest of the proof is a simple corollary of Propositions 5 and 6.

Thus, quasicompositionality gives us scalable reasoning for weak forward
round tripping, which is by construction for biparsers: we just need to prove this
property for individual atomic biparsers. Similarly to backward round tripping,
we can prove forward round tripping by combining weak forward round tripping
with the identity projection property:

Theorem 2. If p :: P u u is weak forward round-tripping, and for all x :: u,
purify p x = Just x, then p is forward round tripping.

Corollary 5. The biparser string is forward round tripping by the above theo-
rem (with identity projection shown in the proof of Corollary 3) and Corollary 4.

Summary Whilst combinator-based approaches to BX can guarantee round-
tripping by construction, we have made a trade-off to get greater expressivity in
the monadic approach. However, we’ve shown here how to regain the ability to
reason about bidirectional transformations in a manageable way.

For any BX we can consider two round-tripping properties: fowards-then-
backwards and backwards-then-forwards, called just forward and backward here
respectively. If such properties are compositional, then we have scalable reason-
ing. But due to the monadic profunctor structuring this tends not to be the
case. Instead, there is a weakening which is compositional or quasicompositional
(adding injectivity). In such cases, we recover the stronger property by prov-
ing a simple property on aligned transformations: that the backwards direction
faithfully reproduces its input as its output (identity projection). We apply this
approach in the next two sections, but in less detail.

5 Monadic bidirectional programming for lenses

Lenses are a common object of study in bidirectional programming, comprising
a pair of functions (get : S → V, put : V → S → S) satisfying well-behaved lens
laws shown in Section 1. Previously, when considering the monadic structure of
parsers and printers, the starting point was that parsers already have a well-
known monadic structure. The challenge came in finding a reasonable monadic
characterisation for printers that was compatible with the parser monad. In the
end, this construction was expressed by a product of two monadic profunctors
Fwd m and Bwd n for monads m and n. For lenses we are in the same position: the
forwards direction (get) is already a monad—the reader monad. The backwards
direction put is not a monad since it is contravariant in its parameter; the same
situation as printers. We can apply the same approach of “monadisation” used
for parsers and printers, giving the following new data type for lenses:



data L s u v = L { get :: s → v, put :: u → s → (v, s) }

Thus, the result of the backward direction is paired with a covariant parameter
v in the same way as monadic printers. Instead of mapping a view and a source
to a source, put now maps values of a different type u, which we call a pre-view,
along with a source s into a pair of a view v and source s. This definition can be
structured as a monadic profunctor via a pair of Fwd and Bwd constructions:

type L s = (Fwd (Reader s)) :*: (Bwd (State s))

Thus by the results of Section 3, we now have a monadic profunctor characteri-
sation of lenses that allows us to compose lenses via the monadic interface.

Ideally, get and put should be total, but this is impossible without a way to
restrict the domains. In particular, there is the known problem of “duplication” [?
], where source data may appear more than once in the view, and a necessary
condition for put to be well-behaved is that the duplicates remain equal amid
view updates. This problem is inherent to all bidirectional transformations, and
bidirectional languages have to rule out inconsistent updates of duplicates either
statically [? ] or dynamically [? ]. To remedy this, we capture both partiality of
get and a predicate on sources in put for additional dynamic checking. This is
provided by the following Fwd and Bwd monadic profunctors:

type ReaderT r m a = r → m a
type StateT s m a = s → m (a, s)
type WriterT w m a = m (a, w)

type L s = (Fwd (ReaderT s Maybe))
:*: (Bwd (StateT s (WriterT (s → Bool) Maybe)))

-- Smart deconstructors:
get :: L s u v → (s → Maybe v)
put :: L s u v → (u → s → Maybe ((v, s), s → Bool))

Going forwards, getting a view v from a source s may fail if there is no view for
the current source. Going backwards, putting a pre-view u updates some source
s (via the state transformer StateT s), but with some further structure returned,
provided by WriterT (s → Bool) Maybe (similar to the writer transformer used
for biparsers, § 3.2, p. 12). The Maybe here captures the possibility that put can
fail. The WriterT (s → Bool) structure provides a predicate which detects the
“duplication” issue mentioned earlier. Informally, the predicate can be used to
check that previously modified locations in the source are not modified again.
For example, if a lens has a source made up of a bit vector, and a put sets bit i to
1, then the returned predicate will return True for all bits vectors where bit i is
1, and False otherwise. This predicate can then be used to test whether further
put operations on the source have modified bit i.

Similarly to biparsers, a pre-view u can be understood as containing the view
v that is to be merged with the source, and which is returned with the updated
source. Ultimately, we wish to form lenses of matching input and output types
(i.e. L s v v) satisfying the standard lens well-behavedness laws modulo explicit



management of partiality via Maybe and testing for conflicts via the predicate:

put l x s = Just ((_, s’), p’) ∧ p’ s’ =⇒ get l s’ = Just x (L-PutGet)
get l s = Just x =⇒ put l x s = Just ((_, s), _) (L-GetPut)

L-PutGet and L-GetPut are backward and forward round tripping respectively.
Some lenses, such as the later example, are not defined for all views. In that case
we may say that the lens is backward/forward round tripping in some subset
P ⊆ u when the above properties only hold when x is an element of P.

For every source type s, the lens type L s is automatically a monadic profunc-
tor by its definition as the pairing of Fwd and Bwd (Section 3.1), and the following
instance of MonadPartial for handling failure and instance of Monoid to satisfy the
requirements of the writer monad:

instance MonadPartial (StateT s (WriterT (s → Bool) Maybe)) where
toFailure Nothing = StateT (λ_ → WriterT Nothing)
toFailure (Just x) = StateT (λs → WriterT (Just ((x , s), mempty)))

instance Monoid (s → Bool) where
mempty = λ_ → True
mappend h j = λs0 → h s0 && j s0

A simple lens example operates on key-value maps. For keys of type Key and
values of type Value, we have the following source type and a simple lens:

type Src = Map Key Value
atKey :: Key → L Src Value Value -- Key-focussed lens
atKey k = mkLens (lookup k)

(λv → λmap → Just ((v, insert k v map), λm’ → lookup k m’ == Just v))

The get component of the atKey lens does a lookup of the key k in a map,
producing Maybe of a Value. The put component inserts a value for key k. When
the key already exists, put overwrites its associated value.

Due to our approach, multiple calls to atKey can be composed monadically,
giving a lens that gets/sets multiple key-value pairs at once. The list of keys and
the list of values are passed separately, and are expected to be the same length.

atKeys :: [Key] → L Src [Value] [Value]
atKeys [] = return []
atKeys (k : ks) = do

x ← comap headM (atKey k) -- headM :: [a] → Maybe a
xs ← comap tailM (atKeys ks) -- tailM :: [a] → Maybe [a]
return (x : xs)

We refer interested readers to our implementation [? ] for more examples, in-
cluding further examples involving trees.

Round tripping We apply the reasoning framework of Section 4, taking the
standard lens laws as the starting point (neither of which are compositional).

We first weaken backward round tripping to be compositional. Informally, the
property expresses the idea, that if we put some value y in a source, resulting in



a source z’, then what we get from z’ is y. However two important changes are
needed to adapt to our generalized type of lenses and to ensure compositionality.
First, the value y that was put is now to be found in the output of put, whereas
there is no way to constrain the input x because its type u is abstract. Second,
by sequentially composing lenses such as in l >>= k, the output source z’ of
put l will be further modified by put (k y), so this round-tripping property must
constrain all potential modifications of z’. In fact, the predicate p ensures exactly
that the view get l has not changed and is still y. It is not even necessary to
refer to z’, which is just one source for which we expect p to be True.

Definition 14. A lens l :: L s u v is weak backward round tripping if for all
x :: u, y :: v, z, z’’ :: s, and p :: s → Bool, we have:

put l x z = Just ((y, _), p) ∧ p z’’ = True =⇒ get l z’’ = Just y

Theorem 3. Weak backward round tripping is a compositional property.

Again, we complement this weakened version of round tripping with the
notion of purification.

Proposition 7. Our lens type L is a purifiable monadic profunctor (Defini-
tion 9), with a family of pure projections proj s indexed by a source s, defined:

proj :: s → L s u v → (u → Maybe v)
proj s = λl u → fmap (fst ◦ fst) (put l u s)

Theorem 4 If a lens l is weak backward round tripping and has identity pro-
jections on some subset P for all s (P x ⇒ proj s l x = Just x) then it is also
backward round tripping on P.

To demonstrate, we apply this result to atKeys :: [Key] → L Src [Value] [Value].

Proposition 8 Atomic lens atKey k is weak backward round tripping.

Proposition 9 Atomic lens atKey k has identity projection: proj (atKey k) = Just.

Our lens atKeys ks is therefore weak backward round tripping by construc-
tion. We now interpret/purify atKeys ks as a partial function, which is actually
the identity function when restricted to lists of the same length as ks.

Proposition 10 For all vs :: [Value] such that length vs = length ks, and for
all z :: Src then proj z (atKeys ks) vs = Just vs.

Corollary 6. By the above results, atKeys ks :: L Src [Value] [Value] for all ks
is backward round tripping on lists of length length ks.

The other direction, forward round tripping, follows a similar story. We first
restate it as a quasicompositional property.

Definition 15. A lens l :: L s u v is weak forward round tripping if for all
x :: u, y :: v, z, z’ :: s, and p :: s → Bool, we have:

get l z = Just y ∧ put l x z = Just ((y, z’), _) =⇒ z = z’



Theorem 5. Weak forward round tripping is a quasicompositional property.

Along with identity projection, this gives the original forward L-GetPut property.

Theorem 6 If a lens l is weak forward round tripping and has identity pro-
jections on some subset P for all s (P x ⇒ proj s l x = Just x) then it is also
forward round tripping on P.

We can thus apply this to our example (details omitted).

Proposition 11. For all ks, the lens atKeys ks :: L Src [Value] [Value] is for-
ward round tripping on lists of length length ks.

6 Monadic bidirectional programming for generators

Lastly, we capture the novel notion of bidirectional generators (bigenerators) ex-
tending random generators in property-based testing frameworks likeQuickCheck
[? ] to a bidirectional setting. The forwards direction generates values conform-
ing to a specification; the backwards direction checks whether values conform to
a predicate. We capture the two together via our monadic profunctor pair as:

type G = (Fwd Gen) :*: (Bwd Maybe)
-- ... with deconstructors and constructors
generate :: G u v → Gen v -- forward direction
check :: G u v → u → Maybe v -- backward direction
mkG :: Gen v → (u → Maybe v) → G u v

The forwards direction of a bigenerator is a generator, while the backwards
direction is a partial function u → Maybe v. A value G u v represents a subset of
v, where generate is a generator of values in that subset and check maps pre-views
u to members of the generated subset. In the backwards direction, check g defines
a predicate on u, which is true if and only if check g u is Just of some value. The
function toPredicate extracts this predicate from the backward direction:

toPredicate :: G u v → u → Bool
toPredicate g x = case check g x of Just _ → True; Nothing → False

The bigenerator type G is automatically a monadic profunctor due to our con-
struction (§3). Thus, monad and profunctor instances come for free, modulo
(un)wrapping of constructors and given a trivial instance of MonadPartial:

instance MonadPartial Maybe where toFailure = id

Due to space limitations, we refer readers to Appendix D for an example of a
compositionally-defined bigenerator that produces binary search trees.

Round tripping A random generator can be interpreted as the set of values it
may generate, while a predicate represents the set of values satisfying it. For a bi-
generator g, we write x ∈ generate g when x is a possible output of the generator.
The generator of a bigenerator g should match its predicate toPredicate g. This
requirement equates to round-tripping properties: a bigenerator is sound if every



value which it can generate satisfies the predicate (forward round tripping); a
bigenerator is complete if every value which satisfies the predicate can be gen-
erated (backward round tripping). Completeness is often more important than
soundness in testing because unsound tests can be filtered out by the predicate,
but completeness determines the potential adequacy of testing.

Definition 16. A bigenerator g :: G u u is complete (backward round tripping)
when toPredicate g x = True implies x ∈ generate g.

Definition 17. A bigenerator g :: G u u is sound (forward round tripping) if
for all x :: u, x ∈ generate g implies that toPredicate g x = True.

Similarly to backward round tripping of biparsers and lenses, completeness can
be split into a compositional weak completeness and a purifiable property.

As before, the compositional weakening of completeness relates the forward
and backward components by their outputs, which have the same type.

Definition 18. A bigenerator g :: G u v is weak-complete when

check g x = Just y =⇒ y ∈ generate g.

Theorem 7. Weak completeness is compositional.

In a separate step, we connect the input of the backward direction, i.e., the
checker, by reasoning directly about its pure projection (via a more general
form of identity projection) which is defined to be the checker itself:

Theorem 8. If a bigenerator g :: G u u is complete if it is weak-complete and
its checker satisfies the pure projection property that:

check g x = Just x’ =⇒ x = x’,

Thus to prove completeness of a bigenerator g :: G u u, we first have weak-
completeness by construction, and we can then show that check g is a restriction
of the identity function, interpreting all bigenerators simply as partial functions.

Considering the other direction, soundness, there is unfortunately no de-
composition into a quasicompositional property and a property on pure projec-
tions. To see why, let bool be a random uniform bigenerator of booleans, then
consider for example, comap isTrue bool and comap isTrue (return True), where
isTrue True = Just True and isTrue False = Nothing. Both satisfy any quasicom-
positional property satisfied by bool, and both have the same pure projection
isTrue, and yet the former is unsound—it can generate False, which is rejected by
isTrue—while the latter is sound. This is not a problem in practice, as unsound-
ness, especially in small scale, is inconsequential in testing. But it does raise
an intellectual challenge: an interesting point in the design space where ease of
reasoning has given way to the greater expressivity of the monadic approach.



7 Discussion and Related Work

Bidirectional transformations are a widely applicable technique used in many
domains [? ]. Among language-based solutions, the lens framework is most in-
fluential [? ? ? ? ? ? ]. Broadly speaking, combinators are used as programming
constructs with which complex lenses are created by combining simpler ones. The
combinators preserve round tripping, and therefore the resulting programs are
correct by construction. A problem with lens languages is that they tend to be
disconnected from more general programming. Lenses can only be constructed by
very specialised combinators and are not subject to existing abstraction mecha-
nisms. Our approach allows bidirectional transformations to be built using stan-
dard components of functional programming, and gives a reasoning framework
for studying compositionality of round-tripping properties.

The framework of applicative lenses [? ] uses a function representation of
lenses to lift the point-free restriction of the combinator-based languages, and
enables bidirectional programming with explicit recursion and pattern matching.
Note that the use of “applicative” in applicative lenses refers to the transitional
sense of programming with λ-abstractions and functional applications, which is
not directly related to applicative functors. In a subsequent work, the authors
developed a language known as HOBiT [? ], which went further in featuring
proper binding of variables. Despite the success in supporting λ-abstractions and
function applications in programming bidirectional transformations, none of the
languages have explored advanced patterns such as monadic programming.

The work on monadic lenses [? ] investigates lenses with effects. For instance,
a “put” could require additional input to resolve conflicts. Representing effects
with monads helps reformulate the laws of round-tripping. In contrast, we made
the type of lenses itself a monad, and showed how they can be composed monad-
ically. Our method is applicable to monadic lenses, yielding what one might call
monadic monadic lenses: monadically composable lenses with monadic effects.
We conjecture that laws for monadic lenses can be adapted to this setting with
similar compositionality properties, reusing our reasoning framework.

Other work leverages profunctors for bidirectionality. Notably, a Profunc-
tor optic [? ] between a source type s and a view type v is a function of type
p v v → p s s, for an abstract profunctor p. Profuctor optics and our monadic
profunctors offer orthogonal composition patterns: profunctor optics can be com-
posed “vertically” using function composition, whereas monadic profunctor com-
position is “horizontal” providing sequential composition. In both cases, compo-
sition in the other direction can only be obtained by breaking the abstraction.

It is folklore in the Haskell community that profunctors can be combined
with applicative functors [? ]. The pattern is sometimes called monoidal pro-
functors. The codec library [? ] mentioned in Section 3 prominently features two
applications of this applicative programming style: binary serialization (a form
of parsing/printing) and conversion to and from JSON structures (analogous to
lenses above). Opaleye [? ], an EDSL of SQL queries for Postgres databases, uses
an interface of monoidal profunctors to implement generic operations such as
transformations between Haskell datatypes and database queries and responses.



Our framework adapts gracefully to applicative programming, a restricted
form of monadic programming. By separating the input type from the output
type, we can reuse the existing interface of applicative functors without modifica-
tion. Besides our generalization to monads, purification and (quasi)compositionality
for verifying round-tripping properties are novel in our framework.

Rendel and Ostermann proposed an interface for programming parsers and
printers together [? ], but they were unable to reuse the exiting structure of
Functor, Applicative and Alternative classes (because of the need to handle types
that are both covariant and contravariant), and had to reproduce the entire hi-
erarchy separately. In contrast, our approach reuses the standard type class
hierarchy, further extending the expressive power of bidirectional programming
in Haskell. FliPpr [? ? ] is an invertible language that generates a parser from
a definition of pretty-printer. In this paper, our biparser definitions are more
similar to those of parsers than printers. This makes sense as it has been estab-
lished that many parsers are monadic. Similar to the case of HOBiT, there is no
discussion of monadic programming in FliPpr.

Previous approaches to unifying random generators and predicates mostly
focused on deriving generators from predicates. One general technique evaluates
predicates lazily to drive generation (random or enumerative) [? ? ], but one loses
control over the resulting distribution of generated values. Luck [? ] is a domain-
specific language blending narrowing and constraint solving to specify generators
as predicates with user-provided annotations to control the probability distribu-
tion. In contrast, our programs can be viewed as generators annotated with left
inverses with which to derive predicates. This reversed perspective comes with
trade-offs: high-level properties would be more naturally expressed in a declara-
tive language of predicates, whereas it is a priori more convenient to implement
complex generation strategies in a specialized framework for random generators.

Conclusions This paper advanced the expressive power of bidirectional program-
ming; we showed that the classic bidirectional patterns of parsers/printers and
lenses can be restructured in terms of monadic profunctors to provide sequential
composition, with associated reasoning techniques. This effectively opens up a
new area in the design of embedded domain-specific languages for BX program-
ming, that does not restrict programmers to stylised interfaces. Our example of
generators broadened the scope of BX programming from transformations (con-
verting between two data representations) to non-transformational applications.

To demonstrate the applicability of our approach to real code, we developed
two bidirectional libraries [? ], one extends the attoparsec monadic parser com-
binator library to biprinters, and one which extends QuickCheck to bigenerators.

However, this is not the final word on sequentially composable BX programs.
In all three applications, round-tripping properties are similarly split into weak
round tripping, which is weaker than the original property but compositional,
and purifiable, which is equationally friendly. An open question is whether an
underlying structure can be formalized, perhaps based on an adjunction model,
that captures bidirectionality even more concretely than monadic profunctors.



A Further code

Complete Monad instance for biparsers The instance is the straightforward prod-
uct of the monad instances for Parser and Printer, where the two parts remain
independent:

instance Monad (Biparser u) where
return :: v → Biparser u v
return v = Biparser (λs → (v, s)) (λ _ → (v, ""))

(>>=) :: Biparser u v → (v → Biparser u w) → Biparser u w
pu >>= kw = Biparser parse’ print’ where

parse’ s = let (v, s’) = parse pu s in parse (kw v) s’
print’ u = let (v, s) = print pu u

(w, s’) = print (kw v) u in (w, s ++ s’)

B Proofs for compositional reasoning

The supplementary Coq proofs formalise many results of Section 4. We include
some results here as hand-proofs for human consumption.

Proposition 1 The biparser char :: Bp Char Char (§3.2) is both backward and
forward round tripping. Proof by expanding definitions and algebraic reasoning.

Proof. By straightforward expansion of the definitions. For backward round trip-
ping:

fmap snd (print p x) = Just [c]

Then parse p ([c] + +s’) = (c, s’) (QED).
For forward round tripping, parse p s = (x, "") means that s must be [x],

then: fmap snd (print p x) = Just [x] (QED).

Proposition 12. The return operation for the Biparser monadic profunctor is
not backward round tripping, but it is weak backward round tripping.

Proof. Let x, y :: u and s, s’ :: String:

– (not backwards round tripping)

fmap snd (print (return y) x)

≡ fmap snd ((λ_ → Just (y, "")) x)

≡ fmap snd (Just (y, ""))

≡ Just ""



Thus s == "". Now we must prove the consequent of backwards round trip-
ping, but it turns out to be false:

parse (return y) ("" ++ s’)

≡ (λs → (y, s)) s’

≡ (y, s’)

6≡ (x, s’)

Thus, return is not backwards round tripping.
– (weak backwards tripping)

print (return y) x

≡ (λ_ → Just (y, "")) x

≡ Just (y, "")

Thus s == "". Now we must prove the consequent of weak backwards round
tripping:

parse (return y) ("" ++ s’)

≡ (λs → (y, s)) s’

≡ (y, s’) ut

Proposition 2 Weak backward round tripping of biparsers is compositional.

Proof. Case return. Shown above.
Case (>>=).

let (sp, v) = print p u
(sk, w) = print (k v) u

print (p >>= k) u = (sp ++ sk, w) -- by definition
parse p (sp ++ sk ++ s’) = (v, sk ++ s’) -- by weak round tripping of p
parse (k v) sk = (w, s’) -- by weak round tripping of k

Case comap: trivial.

Theorem 1 If p :: P u u is weak backward round tripping, and for all x :: u.
purify p x = Just x, then p is backward round tripping.

Proof. The definition of purify p x = fmap fst (print p x) when combined with
the property purify p x = Just x, and the antecedent of backward round trip-
ping (fmap snd (print p x) = Just s), imply that print p x = Just (x, s). This
satisfies the antecedent of weak backward round tripping, thus we can conclude
parse p (s ++ s’) = (x, s’), and thus backward round tripping holds for p.

In Section 4.1 in the proof of Corollary 3, we used three intermediate results
about char, int and replicateP, namely:

proj char n ≡ Just n (4.1)
proj int n ≡ Just n (4.2)

proj (replicateBiparser (length xs) p) xs ≡ mapM (proj p) xs (4.3)



The first two are straightforward from their definitions. Let us take a closer look
at the latter, (4.3).

As a printer, replicateBiparser (length xs) applies the printer p to every
element of the input list xs, and if we ignore the output string with proj, that
yields mapM (proj p) xs. When p is aligned and has proj p = Just, as was the case
in the proof of Corollary 3 then all applications in the list succeed and return a
Just value, so mapM (proj p) xs as a whole succeeds and returns the whole list of
results. Therefore, replicateBiparser (length xs) p xs = Just xs.

C Lenses

Theorem 6 If a lens l is weak forward round tripping and has identity pro-
jections on some subset P for all s (P x ⇒ proj s l x = Just x) then it is also
forward round tripping on P.

Proof. Assume the antecedent of backward roundtripping:

put l x s = Just ((y, s’), p’) ∧ p’ s’ = True

The goal is to prove get l s’ = Just x.
By the identity projection premise we have that proj s l x = Just x for all

s. Recall the definition of proj for lenses:

proj s l = λu → fmap (fst ◦ fst) (put l u s)

Combining this with assumption on put and identity project we see that:

put l x s = Just ((x, s’), p’)

We can thus instantiate weak backward round tripping to get the desired goal:

get l s’ = Just x

Proposition 8 Atomic lens atKey k is weak backward round tripping.

Proof. Recall atKey :: L Src Value Value. Assuming the antecedent of backward
round-tripping, we get the following information:

put l x (atKey k) m = Just ((x, insert k x m), λm’ → lookup k m’ == Just x)

∧ (λm’ → lookup k m’ == Just x) z’’ = True

We then need to prove get l z’’ = Just x. By the definition of get:

get (atKey k) z’’ = lookup k z’’

By the second conjunct of the antecedent we know lookup k z’’ = Just x, giving
the required consequent.

Proposition 9 Atomic lens atKey k has identity projection: proj (atKey k) = Just.



Proof. For all s :: s, following the definition we get:

proj s (atKey k)

≡ λu → fmap (fst ◦ fst) (put (atKey k) u s)

≡ λu → fmap (fst ◦ fst) (Just ((u, ...), ...))

≡ λu → Just u

C.1 Further example: Lenses Over Trees

Our lens structuring provides the following two smart deconstructors and one
smart constructor:

get :: L s u v → (s → Maybe v)
put :: L s u v → (u → s → Maybe ((v, s), s → Bool))
mkLens :: (s → Maybe v) → (u → s → Maybe ((v, s), s → Bool)) → L s u v

As an example of programming with monadic lenses, we consider lenses over
the following data type of binary trees labeled by integers.

data Tree = Leaf | Node Tree Int Tree deriving Eq

In this example, our aim is to build a lens whose forward direction gets the right
spine of the tree as a list of integers. The backwards direction will then allow a
tree to be updated with a new right spine (represent as a list of integers), which
may produce a larger source tree.

We start by defining the classical lens combinator. Given a lens lt to view s

as t, and a lens ly to view t as u, the combinator (>>>) creates a lens to view s

as u. We illustrate and explain the composition on the right.

(>>>) :: L s t t → L t u u → L s u u
lt >>> ly = mkLens get’ put’ where

-- get’ :: s → Maybe u
get’ s = get lt s >>= get ly

-- put’ :: u → s →
-- Maybe ((u, s), s → Bool)
put’ xu s =
case get lt s of

Nothing → Nothing
Just t → do

((y, xt), q’) ← put ly xu t
((_, s’), p’) ← put lt xt s
if q’ xt

then Just ((y, s’), p’)
else Nothing

Illustration of the composition
of lenses in (>>>):

s

get lt
)) t

put lt xt

sii
get ly

)) u
put ly xu

tii

For individual lenses, the put

action takes the source as its
last parameter (shown above
the lower arrows here). In the
case of the composite lens, put’
has a source of type s, thus
we need to create an interme-
diate source of type t in order
to use put ly. This intermedi-
ate source is provided by first
using get lt s.



In the last three lines of putter in (>>>), in order for the composite backwards
direction to succeed, the returned intermediate store xt must be consistent (free
of conflict) as checked by q’ xt.

We define two primitive lenses: rootL and rightL for the root and right child
of a tree:

rootL :: L Tree (Maybe Int) (Maybe Int)
rootL = mkLens getter putter

where
getter (Node _ n _) = Just (Just n)
getter Leaf = Just Nothing

putter n’ t = Just ((n’, t’), p)
where

t’ = case (t, n’) of
(_, Nothing) → Leaf
(Leaf, Just n) → Node Leaf n Leaf
(Node l _ r, Just n) → Node l n r

p t’’ = getter t’ == getter t’’

rightL :: L Tree Tree Tree
rightL = mkLens getter putter

where
getter (Node _ _ r) = Just r
getter _ = Nothing

putter r Leaf = Nothing
putter r (Node l n _) = Just

((r, Node l n r),
λt’ → Just r == getter t’)

The rootL lens accesses the label at the root if it is a Node, otherwise returning
Nothing. Note that Maybe type used here is different to use the of Maybe inside the
definition of L: internally L uses Maybe to represent failure, here at the top-level
we are using it to merely indicate presence of absence of a label.

The second lens rightL accesses the right child of a tree which can however
fail if the source tree is a Leaf rather than a Node.

Both lenses provide put operations which return predicates that check that
the view of a store is equal to the view of the store updated by the put.

We compose these two primitive lenses monadically to define the spineL lens
to view and update the right spine of a tree:

spineL :: L Tree [Int] [Int]
spineL = do

hd ← comap (Just ◦ safeHead) rootL
case hd of

Nothing → return []
Just n → do

tl ← comap safeTail (rightL >>> spineL)
return (n : tl)

Auxiliary functions safeHead and safeTail are defined:

safeHead :: [a] → Maybe a
safeHead (a : _) = Just a
safeHead [] = Nothing

safeTail :: [a] → Maybe [a]
safeTail (_ : as) = Just as
safeTail [] = Nothing



As a get, it first views the root of the source tree through rootL as hd, and
whether it recurse or not depends on whether it is a node (with label n) or a
leaf, using rightL to shift the context. As a put, it updates the root using the
head of the list, which is returned as the view hd, and continues with the same
logic. To illustrate the action of this lens, consider a tree:

t0 = Node (Node Leaf 0 Leaf) 1 (Node Leaf 2 Leaf)

Getting the right spine (get spineL t0) yields the list [1, 2]. The tree spine can
be updated to [3, 4, 5] yielding the following tree:

fmap fst (put spineL [3, 4, 5] t0)
= Just ([3, 4, 5], Node (Node Leaf 0 Leaf) 3 (Node Leaf 4 (Node Leaf 5 Leaf)))

D Generators

This appendix section provides additional code examples for our notion of bi-
generators (bidirectional generators) extending random generators in property-
based testing frameworks like QuickCheck [? ] to a bidirectional setting.

We assume given a Gen monad of random generators (e.g. as defined in the
QuickCheck library for Haskell) and two primitive generators: genBool :: Double → Gen Bool

generates a random boolean according to a Bernoulli distribution with a given
parameter p ∈ [0, 1]; choose :: (Int, Int) → Gen Int generates a random integer
uniformly in a given inclusive range [min,max].

Generators for binary search trees We consider again the type of trees from the
previous section. A binary search tree (BST) is a Tree whose nodes are in sorted
order. Inductively, a BST is either a Leaf, or some Node l n r where l and r are
both binary search trees, nodes in l have smaller values than n, and nodes in r

have greater values than n.

As a working example, we are given some function insert :: Tree → Int → Tree

which inserts an integer in a BST. We want to test the invariant that BSTs are
mapped to BSTs, by generating a BST and an integer to apply the insert func-
tion, and check that the output is also a BST.

With the Gen monad, we can write a simple generator of BSTs recursively:
given some bounds on the values of the nodes, if the bounds describe a nonempty
interval, we flip a coin to decide whether to generate a leaf or a node, and if it is a
node, we recursively generate binary search trees, following the inductive defini-



tion above. We can similarly write a checker for binary search trees as a predicate.

genBST :: Int → Int → Gen Tree
genBST min max | max < min = return Leaf
genBST min max = do

isLeaf’ ← genBool 0.5
if isLeaf’ then return Leaf
else do n ← choose (min, max)

l ← genBST min (n-1)
r ← genBST (n+1) max
return (Node l n r)

checkBST :: Int → Int → Tree → Bool
checkBST min max Leaf = True
checkBST min max (Node l n r) =

min ≤ n
&& n ≤ max
&& checkBST l
&& checkBST r

Bigenerator A generator of values v and a predicate on v (modelled by v → Bool)
together define a bidirectional generator with the same pre-view and view type,
provided here by a smart constructor: mkAlignedG:

mkAlignedG :: Gen v → (v → Bool) → G v v
mkAlignedG gen check = mkG gen (λy → if check y then Just y else Nothing)

Recall from Section 6 that a bigenerator can be mapped to a predicate via
toPredicate:

toPredicate :: G u v → u → Bool
toPredicate g x = isJust (check g x) where
isJust (Just _) = True
isJust Nothing = False

We wrap two generator primitives as bool and inRange. As predicates, bool makes
no assertion, inRange checks that the input integer is within the given range.

bool :: Double → G Bool Bool
bool p = mkAlignedG

(genBool p)
(λ_ → True)

inRange :: (Int, Int) → G Int Int
inRange (min, max) = mkAlignedG

(choose (min, max))
(λx → min ≤ x && x ≤ max)

We consider again a type of labelled trees, with some field accessors. On the
bottom right, leaf is a simple bigenerator for leaves.

data Tree = Leaf | Node Tree Int Tree

nodeValue :: Tree → Maybe Int
nodeValue (Node _ n _) = Just n
nodeValue _ = Nothing

nodeLeft, nodeRight :: Tree → Maybe Tree
nodeLeft (Node l _ _) = Just l
nodeLeft _ = Nothing

nodeRight (Node _ _ r) = Just r
nodeRight _ = Nothing

isLeaf :: Tree → Bool
isLeaf Leaf = True
isLeaf (Node _ _ _) = False

leaf :: G Tree Tree
leaf = mkAlignedG (return Leaf) isLeaf



We then define a specification of binary search trees (bst below). A corresponding
generator and predicate are extracted on the right from this bigenerator:

bst :: (Int, Int) → G Tree Tree
bst (min, max) | min > max = leaf
bst (min, max) = do
isLeaf’ ← comap (Just ◦ isLeaf) (bool 0.5)
if isLeaf’ then return Leaf
else do

n ← comap nodeValue (inRange (min, max))
l ← comap nodeLeft (bst (min, n - 1))
r ← comap nodeRight (bst (n + 1, max))
return (Node l n r)

genBST :: Gen Tree
genBST =

generate (bst (0, 20))

checkBST :: Tree → Bool
checkBST =

toPredicate (bst (0, 20))

As a predicate, bst first checks whether the root is a leaf (isLeaf); returning a
boolean allows us to reuse the same case expression as for the generator. If it is
a node, we check that the value is within the given range and then recursively
check the subtrees.


	Composing bidirectional programs monadically

