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Abstract. Software frequently converts data from one representation
to another and vice versa. Instead of naively specifying both directions
separately, which is error prone and introduces duplication, various bidi-
rectional programming techniques exist to develop programs which may
be interpreted in both directions. However, these techniques often employ
programming idioms that are alien to non-experts.
We propose a framework for composing bidirectional programs monadi-
cally, reusing familiar abstractions in functional programming languages
such as Haskell. We demonstrate the expressiveness of our approach
with applications to writing parsers/printers, lenses, and also genera-
tors/predicates. Finally, we show how to leverage compositionality and
equational reasoning for the verification of round-tripping properties for
such monadic bidirectional programs.

1 Introduction

A bidirectional transformation (BX) is a pair of mutually related mappings be-
tween source and target data objects. This pattern is found in a wide range of
applications, such as parsing (Rendel and Ostermann, 2010), databases (Bancil-
hon and Spyratos, 1981), XML transformation (Pacheco et al., 2014b), etc.

Tediously, one can separately construct the corresponding forwards and back-
wards functions of a BX. This approach duplicates effort, is prone to error, and
causes subsequent maintenance issues. This can be avoided using specialised
programming languages that generate functions in both directions from a sin-
gle definition (Foster et al., 2007; Voigtländer, 2009; Matsuda et al., 2007), a
discipline known as bidirectional programming.

Lenses The most well known language family for BX are lenses (Foster et al.,
2007). A lens captures transformations between sources S and views V via a
pair of functions get : S → V and put : S → V → S. The get function extracts
a view from a source and put takes an updated view and a source as inputs to
produce an updated source. The asymmetrical nature of get and put provides
a way to compensate for the forgetful nature of programs, making it possible to
recover some of the source data that is not present in the view. In other words,
get does not have to be injective to have a corresponding put.

Bidirectional transformations typically respect round-tripping laws, captur-
ing the extent to which the transformations preserve information between the



two data representations. For example, well-behaved lenses (Bohannon et al.,
2006; Foster et al., 2007) should satisfy the following laws:

put s (get s) = s get (put s v) = v

Lens languages are conventionally designed to make invariants of these proper-
ties. This focus on unconditional correctness inevitably leads to reduced practi-
cality in programming. Lens combinators are typically stylised and disconnected
from established programming idioms. For example, they do not benefit from
the applicative/monad framework which combinator libraries typically exploit
in other domains. Moreover, it appears that many applications of bidirectional
transformations (for example, parsers and printers) do not share the lens get/put
pattern, and as a result are out of reach.

Contributions In this paper, we deliberately avoid this well-tried approach,
exploring instead a novel point in the BX design space based on monadic pro-
gramming, naturally reusing host language constructs. We revisit lenses, and two
more bidirectional patterns, and demonstrate how they can be subject to bidirec-
tional programming. By being uncompromising about the monad interface, we
expose the essential ideas behind our framework whilst maximizing its practical
usability. The trade off of this design is that we can no longer perform correct-
ness reasoning in the same way as conventional lenses: our interface does not rule
out all non-round-tripping BX. We tackle this issue by proposing a new compo-
sitional reasoning framework that is flexible enough to characterise a variety of
round-tripping properties. Specifically, we make the following contributions:

– We describe a method to enable monadic composition for bidirectional pro-
grams.

– To demonstrate the flexibility of our approach, we apply the above method
to three different problem domains: parsers/printers, lenses, and genera-
tors/predicates for structured data. While the first two are well-explored
areas in the bidirectional programming literature, we know of little work on
the third one.

– We present a scalable reasoning framework, capturing notions of compo-
sitionality for bidirectional properties. We define classes of round-tripping
properties inherent to bidirectionalism, which can be verified by following
simple criteria. These principles are demonstrated with our three examples.

– We have implemented these ideas as Haskell libraries3, with two wrappers
around attoparsec for parsers and printers, and QuickCheck for generators
and predicates, showing the practicality of our approach.

Throughout we use Haskell for concrete programming language examples, but
the programming patterns can be easily expressed in many functional languages.
We will use the Haskell notation of assigning type signatures to expressions via
the infix double colon “ ::”.
3 https://github.com/Lysxia/profunctor-monad
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1.1 Background

We introduced lenses briefly above. In this subsection, we introduce the other
two bidirectional examples used throughout this paper: parsers/printers and
generators/predicates.

Parsing and printing Programming language tools (such as interpreters, com-
pilers, and refactoring tools) typically require two intimately linked components:
parsers and printers, respectively mapping from source code to ASTs and back.
A simple implementation of these two functions has the types:

parser :: String → AST printer :: AST → String

Parsers and printers are rarely actual inverses to each other, but instead typically
exhibit a variant of round-tripping such as:

parser ◦ printer ◦ parser ≡ parser printer ◦ parser ◦ printer ≡ printer

The left equation describes the common situation that parsing discards in-
formation about source code, such as whitespace, so that printing the resulting
AST does not recover the original source. However, printing retains enough infor-
mation such that parsing the printed output yields an AST which is equivalent
to the AST from parsing the original source. The right equation describes the
dual: printing may map different ASTs to the same string. For example, printed
code 1 + 2 + 3 might be produced by left- and right-associated syntax trees.

For particular AST subsets, printing and parsing may be left- or right- in-
verses to each other, but the above two laws capture the wider pattern of interac-
tion seen between printers and parsers. Other characterisations are also possible,
with equivalence classes of ASTs (accounting for reassociations) or of source code
strings (that account for whitespace and syntactic sugar), providing inverses.

Alternatively, parsers and printers may satisfy properties about the interac-
tion of partially-parsed inputs with the printer and parser, e.g.:

(let (x, s’) = parser s in parser ((printer x) ++ s’)) ≡ parser s

Thus, parsing and printing follows a pattern of inverse-like functions which does
not fit the lens paradigm. The pattern resembles lenses between a source (source
code) and view (ASTs), but with a compositional notion for the source and par-
tial “gets” which consume some of the source, leaving a remainder.

Writing parsers and printers by hand is often tedious due to the redundancy
implied by that inverse-like relation. Thus, various approaches have previously
been proposed specifically for reducing the effort of developing parsers/printers,
by generating both from a common definition Rendel and Ostermann (2010);
Matsuda and Wang (2013).

Generating and checking Property-based testing (e.g., QuickCheck) expresses
program properties as executable predicates. For instance, the following prop-
erty checks that an insertion function insert, given a sorted list — as checked



by the predicate isSorted :: [Int] → Bool — produces another sorted list. The
combinator =⇒ represents implication for properties.

propInsert :: Int → [Int] → Property
propInsert val list = isSorted list =⇒ isSorted (insert val list)

To test it, a testing framework generates random inputs val and list. It first
checks whether list is sorted, and if it is, checks that insert val list is sorted
as well; this process is repeated until either a counterexample is found or a
predetermined number of test cases pass.

However, this naïve method is inefficient: many properties such as propInsert
have preconditions which are satisfied by an extremely small fraction of inputs. In
this case, the ratio of sorted lists among lists of length n is inversely proportional
to n!, so most generated inputs will be discarded for not satisfying the isSorted
precondition. Such tests give no information about the validity of the predicate
being tested and thus are prohibitively inefficient.

When too many inputs are being discarded, the user must instead supply
the framework with custom generators of values satisfying the precondition:
genSorted :: Gen [Int].

One can expect two complementary properties of such a generator. A gener-
ator is sound with respect to the predicate isSorted if it generates only values
satisfying isSorted; soundness means that no tests are discarded, hence the
property to test is better exercised. A generator is complete with respect to
isSorted if it can generate all satisfying values; completeness ensures the cor-
rectness of testing a property with isSorted as a precondition, in the sense that
if there is a counterexample, it will be generated eventually. In this setting of
testing, completeness, which affects the potential adequacy of testing, is arguably
more important than soundness, which affects only efficiency.

It is clear that generators and predicates are closely related, forming a pattern
similar to that of bidirectional transformations. Given that good generators are
usually difficult to construct, being able to extracting both from a common
specification with bidirectional programming is a very attractive alternative.

Roadmap We begin by outlining the core of our approach in Section 2: us-
ing monadic profunctors to structure bidirectional programs. This section uses
parsers and printers as a concrete example, whilst also explaining the general ap-
proach. Section 3 then presents a compositional reasoning framework for monadic
bidirectional programs, with varying degrees of strength adapted to different
round-tripping laws. Then, we replay the developments of the previous sections
to define lens as well as generators and predicates in Sections 4 and 5.

2 Monadic bidirectional programming

In this section, we show how to write bidirectional parsers and printers which
can be composed monadically.



Notation The variables x, y, z will have types u, v, w, respectively. Let m be
some monad. With a similar convention for the second letter, the variable py will
represent monadic actions, of type m v, kz will represent monadic continuations,
or Kleisli arrows, of type v → m w.

Parsers as monads Let us use the simple type for parsers from the introduction,
but abstracted on the AST type:

data Parser v = Parser { parse :: String → (v, String) }

It is well know that parsers are monadic (Hutton and Meijer, 1998), i.e., they
have a well-defined notion of sequential composition (Wadler, 1995), embodied
by the following interface:

instance Monad Parser where
return :: v → Parser v
(>>=) :: Parser v → (v → Parser w) → Parser w

This interface has the following implementation which we will briefly describe:

return y = Parser (λs → (y, s))
py >>= kz = Parser (λs → let (y, s’) = parse py s in parse (kz y) s’)

For any value y, the parser return y doesn’t consume any input and its result is
y. The sequential composition operator (>>=), called bind, first runs the parser
py, resulting in a value y which is used to create the parser kz y, which is in turn
run on the remaining input s’.

Making printers monadic Are printers also monadic? Printers have the type:

data Printer v = Printer { print :: v → String }

This type cannot be a monad, as monads must be covariant functors but Printer
is contravariant. The type parameter v corresponds to the output of Parser v,
whereas it corresponds to the input of Printer v.

Instead, we modify the type of printers to have an extra type parameter
which is an output:

data Printer u v = Printer { print :: u → (String, v) }

The input type u can be understood as some broader representation of a syntax
tree with a certain subtree of type v. A printer extracts that subtree from the
input, and returns it alongside its encoding as a string.

For any fixed input type, that new type of printer is indeed monadic.

instance Monad (Printer u) where
return :: v → Printer u v
return y = Printer (λ_ → ("", y))

(>>=) :: Printer u v → (v → Printer u w) → Printer u w
py >>= kz = Printer (λx →

let (s, y) = print py x
(s’, z) = print (kz y) x in (s ++ s’, z))



The printer return y ignores its input and prints nothing. For sequential compo-
sition, an input x is shared by both computations and the resulting strings are
concatenated. Note that it would not be possible to define (>>=) if the input and
output types were always the same.

2.1 Biparsers

A parser and a printer together make a biparser (bidirectional parser):

data P u v = P { parse :: String → (v, String)
, print :: u → (String, v) }

Thus, we can read P u v as the type of a parser into v values and a printer of v
values derived from u values. When the types of inputs u and outputs v are the
same we are in a more familiar territory, where the printer may simply return
its input alongside the printed string.

The definition of P allows both parsers and printers to be composed sequen-
tially at the same time. That is, P u is a monad for any type u:

instance Monad (P u) where
return :: v → P u v
return y = P (λ s → (y, s)) (λ _ → ("", y))

(>>=) :: P u v → (v → P u w) → P u w
py >>= kz = P parser printer where

parser s = let (y, s1) = parse py s in parse (kz y) s1,
printer x = let (s0, y) = print py x

(s1, z) = print (kz y) x in (s0 ++ s1, z)

The type of (>>=) restricts the input type u of both operands (py and kz) and
the result to be the same. We can then define the following function comap to
transform the input type of the printer, leaving the parser untouched:

comap :: (u → u’) → P u’ v → P u v
comap f (P parse print) = P parse (print ◦ f)

An example Let us perform the following task: write a biparser for strings which
are prefixed by their length and a space, string :: P String String.

For example, the following unit tests should be true:

test1 = parse string "6␣lambda␣calculus" == ("lambda", "␣calculus")
test2 = print string "SKI" == ("3␣SKI", "SKI")

We start by defining a primitive bi-parser of single characters as:

char :: P Char Char
char = P (λ (c : s) → (c, s)) (λ c → ([c], c))

A character is parsed by deconstructing the source string into its head and tail.
For brevity, we do not handle the failure associated with an empty string. A
character c is printed as its single-letter string paired with c.



Next, we define a biparser digit for an integer followed by a single space. In
Haskell, the do-notation statement “d ← comap head char” desugars to use (>>=)

and a function: “comap head char >>= λ d →”.

digits :: P String String
digits = do

d ← comap head char
if isDigit d then do

igits ← comap tail digits
return (d : igits)

else if d == ’ ’ then
return "␣"

else
error "Expected␣digit␣or␣space."

int :: P Int Int
int = do
ds ← comap show’ digits
return (read ds)
where

show’ n = show n ++ "␣"

(A safer implementation could return the Maybe type when parsing but we keep
things simple here.) On the left, digits extracts a String consisting of digits
followed by a single space. As a parser, it parses a character (comap head char),
if it is a digit then it continues parsing recursively (comap tail digits), and
appends the first character to the result (fmap (c :)), otherwise, it must be
a space, in which case the parser terminates by returning it. As a printer, it
expects a string of the same format, which must be non-empty; it writes the
first character through comap head char, which returns it as c; if it is a digit, then
there must be more to print since the last character should be a space, otherwise
the printer terminates.

On the right, the biparser int uses fmap read to convert an input string of
digits parsed by digits to an integer, and comap show’ to convert an integer to
an output string printed by digits,

After parsing an integer n, we can parse the string following it by iterating
n times the biparser char. This is captured by the replicateP combinator below,
akin to replicateM from Haskell’s standard library. It is defined recursively like
digits, but the termination condition is given by an external parameter. To
iterate n times a parser py: if n == 0, there is nothing to do and we return the
empty list; otherwise for n > 0, we run py once to get the head y, and recursively
iterate n-1 times to get the tail ys.

Note that although not apparent in its type, replicateP n py expects, as a
printer, a list l of length n: if n == 0, there is nothing to print; if n > 0, comap head

extracts the head of l to print it with py, and comap tail extracts its tail, of length
n-1, to print it recursively.

replicateP :: Int → P u v → P [u] [v]
replicateP 0 py = return []
replicateP n py = do
y ← comap head py
ys ← comap tail (replicateP (n - 1) py)
return (y : ys)

We can now fulfill our task:
string :: P String String



string = comap length int >>= λ n → replicateP n char

Interestingly, if we erase applications of comap, i.e., we substitute every expression
of the form comap f py with py and ignore the types, we obtain what is essentially
the definition of a parser. This is because comap f is the identity on the parser
component of P. Thus the biparser code closely resembles standard, idiomatic
monadic parser code.

Despite its simplicity, the syntax of length-prefixed strings is notably context-
sensitive. Thus the example makes crucial use of the monadic interface of bi-
parsers: a value (the length) must first be extracted to dynamically delimit the
rest of the string to be parsed. This contrasts with parser generators, e.g., Yacc,
and applicative parsers, which are mostly restricted to context-free languages.

Additional features Lookaheads and backtracking are two notable features
that make programming parsers much more convenient, although they compli-
cate greatly the formulation of round-tripping properties. Thus, this presentation
uses a very simplistic type of parsers for the sake of clarity; the library we men-
tioned in our contributions supports those features.

2.2 Monadic profunctors

The examples of the previous section make crucial use of monadic operations
and comap. We call types implementing these combined operations monadic pro-
functors, and describe them in detail here.

Biparsers were defined via a data type with two type parameters, say p u v,
which is functorial and monadic in the second parameter and contravariantly
functorial in the first parameter. Contravariant functoriality in the first parame-
ter was witnessed by the comap operation in the previous section, which we group
under the following class Cofunctor:

class Cofunctor p where comap :: (u → u’) → p u’ v → p u v

which should obey laws: comap id = id and comap (f ◦ g) = comap g ◦ comap f.

Definition 1. A two-parameter type p which is functorial in both its type pa-
rameters is called a bifunctor. In category theory, a bifunctor F : Cop × C → Set
is called a profunctor. In Haskell, the term profunctor has come to mean any
bifunctor which is contravariant in the first type parameter and covariant in the
second,4 not just those that map to the category of sets and functions. This is
the meaning of profunctors we adopt in this work.

Definition 2. A monadic profunctor, or promonad, is a profunctor p such that
p u is a monad for all u. In terms of type class constraints, this means there is an
instance Cofunctor p and for all u, there is a Monad (p u) instance. That univer-
sally quantified constraint(Bottu et al., 2017) can currently be expressed via the

4 http://hackage.haskell.org/package/profunctors/docs/Data-Profunctor.html
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constraint constructor ForallF (from the constraints package5) as ForallF Monad p.
Thus, we capture promonads via the following class (which inherits all its meth-
ods from its superclasses):

class (Cofunctor p, ForallF Monad p) ⇒ Promonad p where

Monadic profunctors must obey the following laws about the interaction between
cofunctor and monad operations:

comap f (return y) = return y
comap f (py >>= kz) = comap f py >>= (λ y → comap f (kz y))

These laws are equivalent to saying that comap lifts pure functions into monad
morphisms. In Haskell, these laws are obtained for free by parametricity (Wadler,
1989), this means that every contravariant functor and monad is in fact a lawful
monadic profunctor:

instance (Cofunctor p, ForallF Monad p) ⇒ Promonad p where

Corollary 1. Biparsers form a promonad as there is an instance of Monad (P u)

and Cofunctor p satisfying the requisite laws.

2.3 Constructing monadic profunctors

Our examples share monadic profunctors as an abstraction, making it possible
to write different kinds of bidirectional transformations monadically. Underlying
these definitions of promonads is a common structure, which we explain here on
biparsers, and which will be replayed in the future sections (Section 4 for lenses
and Section 5 for bigenerators).

There are two simple ways in which a covariant functor m (resp. a monad)
gives rise to a profunctor (resp. monadic profunctor). The first is by construct-
ing a profunctor in which the first contravariant parameter is discarded, i.e.,
p u v = m v; the second is as the function type from the contravariant parameter
u to m v, i.e., p u v = u → m v. We call these two constructions Astr and Star

respectively:

newtype Astr m u v = Astr { unAstr :: m v }
newtype Star m u v = Star { unStar :: u → m v }

The Star type appears in the Haskell profunctors package; Astr is named as a
pun to resemble Star, as the two are meant to respect domain-specific inverse
relations in our framework.

5 http://hackage.haskell.org/package/constraints
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instance Monad m
⇒ Monad (Astr m u) where

return y = Astr (return y)
Astr py >>= kz = Astr

(py >>= unAstr ◦ kz)

instance Cofunctor (Astr m) where
comap f (Astr py) = Astr py

instance Monad m
⇒ Monad (Star m u) where

return y = Star (λ _ → return y)
Star py >>= kz = Star (λ x →

py x >>= λ y → unStar (kz y) x)

instance Cofunctor (Star m) where
comap f (Star py) = Star (py ◦ f)

The product of two monadic profunctors is also a monadic profunctor. This
follows from the fact that the product of two monads is a monad and the product
of two contravariant functors is a contravariant functor.

data (:*:) p q u v = (:*:) { pfst :: p u v, psnd :: q u v }

instance (Monad (p u), Monad (q u)) ⇒ Monad ((p :*: q) u) where
return y = return y :*: return y
py :*: qy >>= kz = (py >>= pfst ◦ kz) :*: (qy >>= psnd ◦ kz)

instance (Cofunctor p, Cofunctor q) ⇒ Cofunctor (p :*: q) where
comap f (py :*: qy) = comap f py :*: comap f qy

We can redefine biparsers in terms of the above data types, its instances, and
two standard monads: state and writer monads:

type State s a = s → (a, s)
type Writer w a = (w, a)
type Biparser = Astr (State String) :*: Star (Writer String)

The promonad definition for biparsers then comes for free from the constructions
in this section. This construction could be reused to define a promonad for
lenses in Section 4 and bigenerators in Section 5. However, we shall keep the
presentation simple with the specialized instance definitions in each case. Lenses
will actually require a small change in order to prevent conflicts due to the Writer

component possibly overwriting previous actions.
Another simple promonad will be useful throughout the next sections.

Corollary 2. The type of pure functions, (→) is a promonad.

Proof. (→) is isomorphic to the Star of the identity monad.

2.4 Codec

The codec library (Chilton) provides a general type for bidirectional program-
ming called Codec, isomorphic to our composite type Astr r :*: Star w.
data Codec r w c a = Codec { codecIn :: r a, codecOut :: c → w a }

Though the original codec library was developed independently, its current form
is a result of this work. Particularly, we contributed to the package by generalising
its original type (with codecOut :: c → w ()) to the one above, and provided Monad

and Profunctor instances to support monadic bidirectional programming.



3 Compositionality and reasoning

The monadic profunctor structure provides a compact, natural way of defining
biparsers using one set of syntax and operations. This approach also makes it
easier to reason about properties relating the parsers and printers.

Recall that in Section 1.1, we discussed possible round-tripping properties
of bidirectional parser/printer pairs. To talk more formally about these round-
tripping properties of biparsers, it will be useful to separate the string and value
components of the printer.

printS :: P u v → u → String
printS p x = fst (print p x)

printV :: P u v → u → v
printV p x = snd (print p x)

Then we can define the following properties:

Definition 3. A biparser p :: P u u is left round-tripping if for every input x,
we have parse p (printS p x) = (x, "").

Printing a value then parsing the output yields the same value. The printed
string is also entirely consumed, i.e., the printer does not produce superfluous
content. We may naturally define a symmetrical property.

Definition 4. A biparser p :: P u u is right round-tripping if for every input
string s, we have parse p s = (x, "") for some x, and print p x = s.

The presence of left or right round-tripping properties boils down to whether
we put a “canonicity” requirement on the text or the AST representation of
programs, restricting either the parser or the printer. In our example, and in
many applications, the right round-trip property is too strong: it requires that
every string is parseable and is the only representation of the resulting parsed
value x. Therefore, our biparsers are designed only to respect left round-tripping,
though the reasoning techniques we are going to present are not specific to this
choice.

We may try to prove such a property directly by inspecting and expanding the
definition of string, its auxiliary functions, and the underlying combinators. But
this approach is not scalable: the proof becomes unwieldly for more complex
biparsers. A more structured alternative is to generalize the properties to be
compositional, i.e., compatible with the promonad combinators return, (>>=),
and comap: if the primitives (here, char) satisfy such a property, then composite
programs also satisfy the property.

For a promonad p, we consider a property R of promonadic values as an in-
dexed subset of values Ru

v ⊆ p u v. Note that our definitions are in the context
of Haskell where functions are not necessarily total. When k y is not defined, we
consider (k y) ∈ Ru

w to be true. In other words, any promonadically composi-
tional property is implicitly satisfied by an always failing action, represented by
an undefined value ⊥.

Definition 5. A property R is promonadically compositional with respect to a
promonad p if the monad and profunctor operations are closed under R, i.e.,
the following conditions hold for all types u, v, w:



1. For all y :: v, (return y) ∈ Ru
v (comp-return)

2. For all py :: p u v and k :: v → p u w,(
py ∈ Ru

v
)
∧

(
∀y. (k y) ∈ Ru

w
)

=⇒ (py >>= λ y → k y) ∈ Ru
w

(comp-bind)
3. For all py :: p u’ v and f :: u → u’,

py ∈ Ru’
v =⇒ (comap f py) ∈ Ru

v (comp-comap)

In other words, a promonadically compositional property is a congruence with
respect to the promonad operations. Consequently, we can restrict the promonad
operations to values satisfying property R, yielding a promonad on R. In fact,
the inclusion Ru

v ⊆ p u v can be seen as a promonad morphism from R to p.

3.1 A compositional property of biparsers

Definition 6. A biparser p :: P u v is well-behaved if for all x :: u and s :: String,
if print p x is defined, then:

parse p (printS p x ++ s) = (printV p x, s)

In other words, the printed string can be parsed back to the value returned by
the printer. The universal quantification on strings s generalizes the property
sufficiently for sequential composition (>>=) to preserve it.

Proposition 1. Well-behavedness is promonadically compositional with respect
to the biparser implementation of Section 2.

Proposition 2. The primitive biparser char is well-behaved. As a corollary, so
is string.

Programming against an interface of well-behaved primitives and combinators
which preserve well-behavedness ensures that the resulting programs are well-
behaved by construction.

3.2 Alignment

We have managed to guarantee the well-behavedness of biparsers through the
monadic interface. But by itself, well-behavedness is not sufficient for round-
tripping because of a loophole: if the printer always fails, then the biparser is
vacuously well-behaved. The following property, which we call alignment, rules
out such behaviour (so that a biparser at least sometimes succeeds) and relates
the output of a printer to its input:

Definition 7. Biparsers of type p u u for a type u, are aligned if x = printV p x,
i.e., printV p is the identity function.

Corollary 3. An aligned and well-behaved biparser is left round-tripping.



Proof. By alignment, (printV p x, s) = (x, s). By well-behavedness,
parse p (printS p x ++ s) = (printV p x, s). Conclude with s = "".

However, alignment is not a compositional property as only it applies to biparsers
of type P u u, with the same input and output types, but the types of return,
(>>=) and comap allow them to vary independently. Furthermore, the totality it
implies suggests that alignment should not be thought of as an invariant of bi-
parsers (compositionality being one way to formalize such invariants): generally,
composing aligned biparsers does not necessarily produce aligned biparsers, and
composing non-aligned biparsers does not necessarily produce non-aligned ones.

Instead, we can use equational reasoning to establish alignment. Recall that
for a biparser P u v, printV extracts a partial function u → v:

printV :: P u v → (u → v)
printV p x = snd (printer p x)

printV is in fact a promonad morphism, i.e., it satisfies the following equations,
where promonadic operations on the left belong to the promonad P, and those
on the right belong to (→):

printV (return y) = return y
printV (py >>= λy → kz y) = printV py >>= λy → printV (kz y)
printV (comap f py) = comap f (printV py)

These equations enable a proof that the string biparser is aligned.

Proposition 3. The string biparser is aligned, i.e., printV string is the identity
function on strings.

Proof. Starting with the definition of string, applying the above equations from
left to right, then expanding the definitions of promonadic operations on (→),
we obtain the following:

printV string
= do n ← comap length (printV int)

printV (replicateP n char)
= λx → printV (replicateP ((printV int) (length x)) char) x

We may prove the following lemmas:

printV int = id
printV (replicateP (length u) p) u = map (printV p) u

Then the above reduces to

printV string = (λ x → x) = id

Corollary 4. The biparser string satisfies the left round-tripping property.

Thus, we have reduced the proof of the left round-tripping property to a proof of
alignment and a proof of well-behavedness on the base biparsers (well-behavedness
is then guaranteed by compositionality).



3.3 Quasicompositionality

In addition to equational reasoning for alignment, there is another regularity
of biparser construction which we can explore. In particular, all occurrences of
(>>=), which also appear in the form of syntactic sugar "←" as part of Haskell’s
do-notation, are accompanied by a preceding comap.

Considering a biparser (comap f py >>= λ y → kz y), we can imagine py in-
formally as a biparser for a “header” y, which contains information about how to
subsequently parse or print the “body” using kz y. The final value contains both
the header and the body; when interpreting the biparser as a printer, we use the
function f to extract the header from it, print it with py, and pass it along to
kz. Thus, kz y is a biparser specifically for values which have y as their header.
We call kz an injective (Kleisli) arrow.

Definition 8. Let m be a monad. A function k of type v → m w is an injective
arrow if there exists a function f of type w → v, which we call a sagittal left
inverse of k, such that, for all y:

(k y >>= λz → return (y, z)) = (k y >>= λz → return (f z, z))

Informally, an injective arrow represents a computation producing an output z

from which the “header” y that is an input to the arrow can be extracted back.
As the naming suggests, injective arrows generalize injective functions. Indeed,
a function f is injective iff there exists f’ (a left inverse) such that f’ ◦ f = id.
This is equivalent to the above condition in the identity monad (m w ~ w).

Note that all but one of the right operands of (>>=) that can be found in our
examples are injective arrows, e.g., (λ n → replicateP n char).

The one arrow that is not injective is λ ds → return (read ds) in the int

function. Indeed, the read function is not injective, since multiple strings may
parse to the same integer: read "0" = read "00" = 0. It may only be considered
injective after taking a quotient of the set of input strings by the equivalence
between strings which differ only in a prefix of zeroes.

The pattern where every (>>=) is accompanied by a comap points towards the
following notion of quasicompositionality.

Definition 9. Let p be a monadic profunctor. A property Qu ⊆ p u u is quasi-
compositional if the following holds, for all types u, v:

1. For all x :: u, (return x) ∈ Qu.
2. For all px :: p u u, ky :: u → p v v. and sagittal left inverse f :: v → u of ky,

px ∈ Qu ∧ (∀x . (ky x) ∈ Qv) =⇒ (comap f px >>= λ x → ky x) ∈ Qv.

One example of quasicompositional property is a partial variant of the left round-
tripping property which is conditional on the success of the printer. We call the
previous round-tripping properties total to distinguish them from this one.

Definition 10. A biparser p is partial left round-tripping when the following
holds: if printerS p x = s, then parser p (s ++ s’) = (x, s’) for all s’.



Quasicompositionality is another way to structure reasoning about round-
tripping properties, other than combining well-behavedness and alignment. Al-
though the partial left round-tripping property is weaker, it may be possible to
design an abstraction to compose injective arrows, akin to the partial isomor-
phisms of Rendel and Ostermann (2010) (also called partial injective functions)
and thus to obtain quasicompositional properties by construction. However, our
focus here is to reuse the existing interface for monads as much as possible.

4 Monadic bidirectional programming for lenses

Recall the standard characterisation of lenses as a pair of functions (get : S →
V, put : S → V → S) potentially satisfying the laws of well-behaved lenses shown
in the introduction. Following a similar scheme to the “monadisation” of parsers
and printers, we define the following new data type for lenses:

data L s u v = L { get :: s → v, put :: s → u → (s, v) }

The type of get is the same as before, but put has changed slightly. Instead of
mapping a source and a view to a source, put now maps a source s and a different
type u, which we call a pre-view, into a source s paired with a view v.

We split the source and view components of put (which are partial functions):

putS :: L s u v → (s → u → s)
putS l s x = fst (put l s x)

putV :: L s u v → (s → u → v)
putV l s x = snd (put l s x)

Similarly to biparsers, a pre-view x :: u can be understood as containing the
view y :: v that is to be merged with the source, and returned together with
the updated source. Ultimately, we wish to form lenses of matching input and
output types u ~ v, satisfying the standard lens laws.

get l (putS l s x) = x (L-PutGet)
putS l s (get l s) = s (L-GetPut)

For every source type s and pre-view type u, the lens type L s u is a monad:

instance Monad (L s u) where
return :: v → L s u v
return y = L (λ _ → y) (λ s _ → (s, y))

(>>=) :: L s u v → (v → L s u w) → L s u w
ly >>= kz = L getter putter where

getter s = get (kz (get ly s)) s
putter s x = let (s’, y) = put ly s x

in put (kz y) s’ x

The lens return y always gets and puts the view y, leaving the source untouched.
We also have a way to map over pre-views:

comap :: (u → u’) → L s u’ v → L s u v
comap f py = L (get py) (λ s x → put py s (f x))



Moreover, lenses can be composed to access nested views. Given a lens lt to
view s as t, and a lens ly to view t as v, the combinator (>>>) creates a lens to
view s as v; lenses actually form a category; the signature here is more general
and allows the pre-view and view types of the inner lens to differ:

(>>>) :: L s t t → L t u v → L s u v
lt >>> ly = L getter putter where
getter = get ly ◦ get lt
putter s x = let t = get lt s

(t’, y) = put ly t x
(s’, _t’’) = put lt s t’ in (s’, y)

As an example of programming with these monadic lenses, we consider lenses
over the following data type of binary trees labeled by integers.

data Tree = Leaf | Node Tree Int Tree

We define two primitive “shallow” lenses: one lens accesses the label at the root
if it is a Node, otherwise returning Nothing; another lens accesses the right child.
The second lens is partial and assumes the root constructor is a Node.

rootL :: L Tree (Maybe Int) (Maybe Int)
rootL = L getter putter where

getter t = case t of
Leaf → Nothing
Node _ n _ → Just n

putter t n’ = case (t, n’) of
(_, Nothing) → (Leaf, n’)
(Leaf, Just n) → (Node Leaf n Leaf, n’)
(Node l _ r, Just n) → (Node l n r, n’)

rightL :: L Tree Tree Tree
rightL = L getter putter where

getter (Node _ _ r) = r
putter (Node l n _) r =

(Node l n r, r)

Composing these primitives, we obtain a lens to view the right spine of a tree. As
a get, it first views the root of the source tree through rootL as hd, and whether
it recurse or not depends on whether it is a node (with label n) or a leaf, using
rightL to shift the context. As a put, it updates the root using the head of the
list, which is returned as the view hd, and continues with the same logic.

spineL :: L Tree [Int] [Int]
spineL = do

hd ← comap headM rootL
case hd of

Nothing → return []
Just n → do

tl ← comap tail (rightL >>> spineL)
return (n : tl)

This auxiliary function safely
gets the head of a list, if it ex-
ists.

headM :: [a] → Maybe a
headM (a : _) = Just a
headM [] = Nothing

To illustrate the action of this lens, consider a tree:

t0 = Node (Node Leaf 0 Leaf) 1 (Node Leaf 2 Leaf)

Getting the left spine (get spineL t0) yields the list [1, 2]. The tree spine can
be updated to [3, 4, 5] yielding the tree:



fst (put spineL t0 [3, 4, 5])
= Node (Node Leaf 0 Leaf) 3 (Node Leaf 4 (Node Leaf 5 Leaf))

4.1 Compositionality and reasoning for lenses

Section 3 introduced notions of compositional and quasicompositional properties
for promonads, showing properties of well-behavedness (compositional), align-
ment, and partial round-tripping (quasicompositional) for biparsers. We follow
the same scheme here for lenses. Firstly, lens combinators (promonadic opera-
tions and (>>>)) have a compositional property of well-behavedness which par-
allels a similar notion for biparsers. Following this, we consider lens alignment.

Well-behaved lenses The standard properties of a well-behaved lens capture
the round-tripping relationship between the put and get operations (L-PutGet
and L-PutGet, p. 15). We adapt these properties to our promonadic form of
lenses. This adaption takes account of the change to put, which now outputs a
view rather than taking it as an input; the pre-view argument to put takes the
place of the view, but the output view should related to the pre-view.

Definition 11. A lens l :: L s u v is well-behaved if the following holds:

put l s x = (s’, y) =⇒ get l s’ = y (L-semi-PutGet)
get l s = y ∧ put l s x = (s’, y) =⇒ s’ = s (L-semi-GetPut)

If putting y in s (from the pre-view x) succeeds and results in s’, then we get
y from s’ (L-semi-PutGet); if we get y from s, then putting y in s results in s

unchanged (L-semi-GetPut). However, to put a given view y, we must first have a
pre-view x which contains it, this is why, formally, put occurs in the premise of the
latter implication. Moreover, this definition of well-behavedness is weaker than
that which can be found in the lens literature, due to the decoupling between
views and pre-views, hence the “semi-” prefix.

One condition of compositionality that merits particular attention is
(comp-bind): if the lens ly :: L s u v is well-behaved, and if kz y :: L s u w is
well-behaved for all y, then ly >>= kz is a well-behaved lens. However, the defini-
tion of (>>=) above is not compatible with (L-semi-PutGet). Indeed, to compose
the two lenses, their put functions can only be applied one after the other, on dif-
ferent sources s and s’. The second modification may break the relation between
the source s’ and its view y through the first lens ly.

For instance, consider a simple lens on the first component of a pair.

fstL :: L (u, v) u u
fstL = L getter putter where

getter (x, _) = x
putter (_, y) x = ((x, y), x)

Composing it sequentially with itself yields a lens that gets from and puts into
the first component twice.



fstTwiceL :: L (u, v) (u, u) (u, u)
fstTwiceL = fstL >>= λ x → fstL >>= λ x’ → return (x, x’)

If we put two distinct elements with that lens, the second one overwrites the
first, so that we get it back twice. Thus, it fails the (L-semi-PutGet) law.

put fstTwiceL (x, y) (x1, x2) = ((x2, y), (x1, x2))
get fstTwiceL (x2, y) = (x2, x2)

This is actually not surprising; it is well known in the bidirectional transfor-
mation literature that if a source variable is duplicated in the view, all the
occurrences of it must remain equal amid updates (otherwise PutGet will be
violated) (Foster et al., 2007).

Instead, we can enforce the (L-semi-PutGet) law by trading totality for well-
behavedness: we add a run-time assertion that the view through the first lens
remains untouched by the second lens. This requires the type of views to have
decidable equality, represented by the Eq type class:

(>>=) :: Eq v ⇒ L s u v → (v → L s u w) → L s u w
ly >>= kz = L getter putter where

getter s = get (kz (get ly s)) s
putter s x = let (s’, y) = put ly s x

(s’’, z) = put (kz y) s’ x
in if get ly s’’ == y then (s’’, z)

else error "Put␣conflict"

The condition get py s’’ == y means that, after the first lens py puts y into the
source, whatever kz y puts must not modify y that is already there. When this
condition does not hold, we say that py and kz are in conflict.

Note, that despite the equality contraint, this definition can still be made
into an instance of Monad, for example using the approach of Sculthorpe et al.
(2013), but this is an orthogonal issue to the core idea.

Proposition 4. Well-behavedness is promonadically compositional with respect
to the promonad defined by return and the new (>>=).

However, to account for the (>>>) operator, we need a notion of alignment.

Alignment As before, verifying the round-tripping between get l and put l

is reduced to checking that an interpretation of the lens l, as a pure function
putV l s from pre-views to views, is the identity (Section 3.2).

Definition 12. A lens l :: L s u u is aligned if putV l s be the identity function
for all sources s.

Proposition 5. Well-behavedness and alignment imply the lens laws L-GetPut
and L-PutGet.

However, we find that the mapping from l to putV l s does not define a
promonad morphism, which prevents us from applying the equational reasoning



techniques we demonstrated for parsers. The issue is caused by the conditional
expression we inserted in the put component of (>>=).

Consider again the (ill-behaved) fstTwiceL lens we introduced earlier. Note
that putV fstL s = id — nothing goes wrong if we just update the first compo-
nent of a pair. Thus, if the function λ l → putV l s defined a promonad mor-
phism for all s, we would have:

putV fstTwiceL s = λ (x, x’) → (putV fstL s x, putV fstL (putS fstL s) x’)
= λ (x, x’) → (x, x’)

Yet, by our design, fstTwiceL should fail whenever x /= x’, so we cannot have
a promonad morphism. We have the following equation for ly >>= kz only if ly

and kz are not in conflict.

putV (ly >>= λ y → kz y) s = putV ly s >>= λ y → putV (kz y) s

Theoretically, avoiding conflicts requires a non-trivial level of non-local reasoning
that is outside the scope of this article. In practice, a common pattern is to
sequentially compose accesses to distinct fields of a constructor, for example:

data Record = Record { x :: X, y :: Y }

xLens :: L Record X X
yLens :: L Record Y Y

twoDisjointAccesses :: (v → w → t) → L X u v → L Y u w → L Record u t
twoDisjointAccesses f ly lx = do

x ← xLens >>> ly
y ← yLens >>> lz
return (f x y)

It is clear that the two lenses xLens >>> ly and yLens >>> lz are not in conflict.
Nevertheless, we can still guarantee conditional alignment : if put ly succeeds

without conflicts on some input x, then putV ly s maps x to itself, and the Put-
Get and GetPut laws hold for it. More formally, consider the domain-theoretic
denotations of programs, where the smallest element _|_ corresponds to un-
defined or error values. In the definition of (>>=), the conditional expression
(if ... then (s’’, w) else error "...") is denotationally smaller than (s’’, w).
With that ordering defined between partial values, written (-<), putV defines a
submorphism of monads:

(putV (ly >>= kz) s) -< (putV ly >>= λy → putV (kz y) s)

This approximation abstracts away the concern of put-conflicts to recover a form
of (in)equational reasoning.

Definition 13. A lens l is partially aligned if, for all s, we have putV l s -< id.
In other words, if putV l s x = x’ for some x and x’, then x = x’.

Proposition 6. If lt :: L s t t is partially aligned and well-behaved, and if
ly :: L t u v is well-behaved, then lt >>> ly is well-behaved.



Proposition 7. The primitive lenses rootL and rightL are well-behaved. As a
consequence, the lens spineL we wrote is well-behaved.

Partial alignment implies the “lens laws up to conflicts”, L-PutGet-Ineq and L-
GetPut-Ineq. Indeed, spineL satisfies them. We also note that these two laws are
quasicompositional:

get l (putS l s y) -< y (L-PutGet-Ineq)
putS l (get l s) -< s (L-GetPut-Ineq)

5 Monadic bidirectional programming for generators

We capture the notion of bigenerators (bidirectional generators) as the type:

data G u v = G { generate :: Gen v, check :: u → Maybe v }

This extends the notion of generators in property-based testing frameworks like
QuickCheck (Claessen and Hughes, 2000) to a bidirectional setting. A G u v value
represents a set of generable values, where generate is a generator of views v in
that set and check maps pre-views u to members of the generated set, inducing
a predicate on pre-views through explicit partiality, modelled by Maybe.

A generator of values v and a predicate on v (modelled by v → Bool) together
define a bidirectional generator with the same pre-view and view type, via mkG.
A bigenerator can be mapped to a generator via generate above and a predicate
via toPredicate below.

mkG :: Gen v → (v → Bool) → G v v
mkG generate predicate = G generate check where

check y = if predicate y then Just y else Nothing

toPredicate :: G u v → u → Bool
toPredicate g x = isJust (check g x) where

isJust (Just _) = True
isJust Nothing = False

Our bigenerator type has the structure of a promonad, with the definition:

instance Monad (G u) where
return y = G (return v) (λ _ → Just y)
py >>= kz = G generate check where

generate = generate py >>= λy → generate (kz y),
check x = check py x >>= λy → check (kz y) x

instance Cofunctor G where
comap :: (u → u’) → G u’ v → G u v
comap f py = G (generate py) (check py ◦ f)

We define two primitives: bool generates a boolean according to a Bernoulli
distribution with a given parameter p ∈ [0, 1], inRange generates an integer ac-
cording to the uniform distribution in a given range. As predicates, bool makes



no assertion, inRange checks that the input integer is within the given range.

bool :: Double → G Bool Bool
bool p = mkG

(fmap (< p) (choose (0, 1)))
(λ_ → True)

inRange :: (Int, Int) → G Int Int
inRange (min, max) = mkG

(choose (min, max))
(λx → min ≤ x && x ≤ max)

We consider again a type of labelled trees, with some field accessors. On the
bottom right, leaf is a simple bigenerator for leaves.

data Tree = Leaf | Node Tree Int Tree

nodeValue :: Tree → Int
nodeValue (Node _ n _) = n

nodeLeft, nodeRight :: Tree → Tree
nodeLeft (Node l _ _) = l
nodeRight (Node _ _ r) = r

isLeaf :: Tree → Bool
isLeaf Leaf = True
isLeaf (Node _ _ _) = False

leaf :: G Tree Tree
leaf = mkG (return Leaf) isLeaf

We then define a specification of binary search trees (bst below), i.e., trees whose
nodes are in sorted order. A corresponding generator and predicate are extracted
on the right from this bigenerator:
bst :: (Int, Int) → G Tree Tree
bst (min, max) | min > max = leaf
bst (min, max) = do
isLeaf’ ← comap isLeaf (bool 0.5)
case isLeaf’ of

True → return Leaf
False → do

n ← comap nodeValue (inRange (min, max))
l ← comap nodeLeft (bst (min, n - 1))
r ← comap nodeRight (bst (n + 1, max))
return (Node l n r)

genBST :: Gen Tree
genBST =

generate (bst (0, 20))

checkBST :: Tree → Bool
checkBST =

toPredicate (bst (0, 20))

The bigenerator bst is parameterized by an integer interval restricting the possi-
ble values of the trees. As a random generator, we flip a coin (bool 0.5) to decide
whether to generate a leaf or a node. In the case of a node (the False branch),
we first generate a value for the root, which is used to update the bounds of the
left and right recursive cases.

As a predicate, bst first checks whether the root is a leaf (isLeaf); returning
a boolean allows us to reuse the same case expression as for the generator. If it
is a node, we check that the value is within the given range and then recursively
check the subtrees.

5.1 Compositionality and reasoning for bigenerators

A random generator can be interpreted possibilistically as the set of values it
may generate, while a predicate represents the set of values satisfying it. For
a bigenerator py, we write x ∈ generate py when x is a possible output of the
generator generate py.



Generators should match the predicate they represent. We state this require-
ment as two round-tripping properties: a bigenerator is sound if every value
which it can generate satisfies the predicate; a bigenerator is complete if every
value which satisfies the predicate can be generated. As discussed in the in-
troduction, completeness is more important than soundness in testing, because
unsound tests will be filtered out by the predicates as usual, but completeness
determines the potential adequacy of testing.

It turns out that completeness is much easier to enforce constructively for
bigenerators, whereas soundness is harder to ensure in our framework.

Completeness Completeness is defined as follows:

Definition 14. A bigenerator g :: G u u is complete when toPredicate g x = True

implies x ∈ generate g.

Similarly to biparsers and lenses, this round-tripping property can be split into
compositional and pure fragments: well-behavedness and (partial) alignment.

Definition 15. A bigenerator g :: G u v is well-behaved when check g x = Just y

implies y ∈ generate g.

Since the point of a predicate is to filter out invalid values, the notion of
alignment we shall use for bigenerators should allow partial functions. The same
lightweight reasoning methods as before still apply to verify completeness.

Definition 16. A bigenerator g :: G u u is partially aligned when
check g x = Just x’ implies x = x’.

Proposition 8. An aligned and well-behaved generator is complete.

Soundness Soundness is defined as follows:

Definition 17. A bigenerator g :: G u u is sound if for all x :: u, x ∈ generate g

implies that toPredicate g x = True.

Soundness is not as easy to ensure as completeness in our framework. For
instance, the following bigenerator is unsound:

unsound = comap (λ _ → 3) (inRange (0,2))

As a generator, this just produces an integer between 0 and 2 (comap has no ef-
fect). But as a predicate, the input value is ignored, and 3 is checked to be in the
interval [0, 2], which fails of course. Thus it is unsound: values are generated, but
none of them satisfies the predicate. Furthermore, since check unsound x = Nothing

for all x, this bigenerator is vacuously well-behaved and aligned.
As this example shows, we may lose information about the predicate by ap-

plying arbitrary functions with comap, whereas the generator remains untouched.
We recover a close correspondence between generators and predicates with the
restriction to composition patterns identified by quasicompositionality.



Proposition 9. Completeness and soundness are quasicompositional.

Proposition 10. bool, inRange (n, m) and leaf are sound and complete for all
(n, m). As a consequence, bst (n, m) is also sound and complete, for all (n, m).

6 Discussion and Related Work

6.1 Applicative bidirectional programming

Existing techniques in the literature and in the wild have leveraged various other
common abstractions to compose bidirectional programs, such as categories (Al-
imarine et al., 2006), and, more closely related to our work, applicative functors.
While monadic sequential composition (>>=) allows one computation to depend
on the result of a previous one, applicative composition can only sequence inde-
pendent computations, whose results can nevertheless be combined purely. It is
often complemented by a combinator for non-deterministic choice or backtrack-
ing in order to allow a limited but often effective form of data dependency.

Rendel and Ostermann (2010) proposed a bidirectional programming in-
terface imitating applicative functors. Although its presentation was centered
around parsers and printers, it is also applicable to the settings of lenses and
random generators we explored here. To account for the opposite polarities of
parsers and printers, which are covariant and contravariant functors, respec-
tively, the interface expects user-defined “partial isomorphisms” to transform
and combine parser outputs and deconstruct printer inputs in the same bidirec-
tional program, as opposed to regular functions in “unidirectional” applicative
programming.

Our framework adapts gracefully to applicative programming, which is in
fact a restricted form of monadic programming. By separating the input type
from the output type, we can reuse the existing interface of applicative functors
without modifying it. The pattern of combining profunctors with applicative
functors is actually folklore in the Haskell community, sometimes calledmonoidal
profunctors. Besides its generalization to monads, the concepts of alignment and
quasicompositionality for verifying round-tripping properties are novel to the
best of our knowledge.

The codec (Chilton) library we mentioned in Section 2.2 prominently features
two applications of this monadic programming style: binary serialization (a form
of parsing/printing) and conversion to and from JSON structures (analogous to
lenses above).

Opaleye (Purely Agile), an EDSL of SQL queries for Postgres databases, uses
an interface of monoidal profunctors to implement generic operations such as
transformations between Haskell datatypes and database queries and responses.

6.2 Lenses

Bidirectional transformations represent a widely applicable solution that is used
and studied in many domains (Czarnecki et al., 2009). Among language-based



solutions, the lens framework is most influential (Foster et al., 2007; Barbosa
et al., 2010; Bohannon et al., 2008; Foster et al., 2010; Rajkumar et al., 2013;
Pacheco et al., 2014a).

Many different representations of lenses have been studied to make them
easier to work with. Profunctor optics (Pickering et al., 2017) are a generalization
of lenses to which our work bears a striking resemblance.

More precisely, a profunctor optic between a source type s and a view type
v is a function of type p v v → p s s, for an abstract profunctor p. There are
two interesting comparisons to make between profunctor optics and monadic
profunctors. First, they offer orthogonal composition patterns: profunctor op-
tics can be composed “vertically” simply using function composition, whereas
promonadic composition is “horizontal”. In both cases, composition in the other
direction can only be obtained by breaking the abstraction, as we do with a
custom (>>>) combinator. Second, promonadic definitions are loosely similar to
profunctor optics. By abstracting over primitives, e.g., rootL and rightL in Sec-
tion 4, the type of a monadic lens such as spineL becomes:

L Tree (Maybe Int) (Maybe Int) → L Tree Tree Tree → L Tree [Int] [Int]

This corresponds loosely to a profunctor optic with source type [Int], and two
types of views: Maybe Int and Tree, corresponding to the second and third ar-
guments to the type constructor L. This is not exclusive to promonadic lenses.
Biparsers and bigenerators are also profunctor-optic-like in the same way, but
we chose the example of lenses to better set our work apart from the point of
view of profunctor optics. Indeed, the parallel we drew mismatches the notions
of “view” and “source” in the two approaches. Among other differences, in the
type of promonadic lenses L s u v, the source type s is internal to the concrete
profunctor L s, whereas profunctor optics operate with an abstract profunctor p

and rely on parametricity to preserve the relation between the view and source
in p v v → p s s. Nevertheless, this resemblance suggests a deeper connection
between monadic profunctors and profunctor optics to investigate in the future.

More dramatically, the framework of applicative lenses (Matsuda and Wang,
2015) uses a different function representation of lens to break out from the point-
free restriction, and enable bidirectional programming with explicit recursion
and pattern matching. Note that the use of “applicative” in applicative lenses
refers to the transitional sense of programming with λ-abstraction and functional
application, which is not related to applicative functors in Haskell (McBride
and Paterson, 2008). In this paper, we construct a new composition framework
for lenses based on monads, which fits neatly into Haskell’s existing type class
hierarchy. This new composition technique not only enables lens programming in
the monadic style, but also opens up bidirectional programming to new domains
that utilise monadic composition, e.g., random generators for testing.

The work on monadic lenses (Abou-Saleh et al., 2016) investigates lenses
with effects. For instance, a put could require additional input to resolve con-
flicts when merging a view and a source. Representing effects with monads helps
to reformulate the laws that define well-behaved lenses. In contrast, we made the
type of lenses itself a monad, and we showed how they can be composed monad-



ically to preserve well-behavedness. Our method is applicable to monadic lenses,
yielding what one might call monadic monadic lenses: monadically composable
lenses with monadic effects. We conjecture that laws for monadic lenses can be
adapted to this setting with similar compositionality properties.

6.3 Random generators and predicates

Previous approaches to unifying random generators and predicates mostly fo-
cused on deriving generators from predicates. One general technique for instance
consists in evaluating predicates lazily to drive generation (random or enumera-
tive) (Boyapati et al., 2002; Claessen et al., 2015), but one loses control over the
resulting distribution of generated values. Luck (Lampropoulos et al., 2017) is
a domain-specific language blending narrowing and constraint solving to specify
random generators as predicates with user-provided annotations to control the
probability distribution.

In contrast, our programs can be viewed as generators annotated with left
inverses with which to derive predicates. This reversed perspective comes with
trade-offs: high-level properties would be more naturally expressed in a declara-
tive language of predicates, whereas it is a priori more convenient to implement
complex generation strategies in a specialized framework for random generators.

7 Conclusions

This paper advanced the expressive power of bidirectional programming; we
showed that the classic bidirectional patterns of parsers/printers and lenses can
be restructured in terms of monadic profunctors to provide sequential composi-
tion, with associated reasoning techniques. This effectively opens up a new area
in the design of embedded domain-specific languages for bidirectional program-
ming, that does not restrict programmers to stylised interfaces. Our example
of generators broadened the scope of bidirectional programming from transfor-
mations (converting between two data representations) to non-transformational
applications.

However, this is not the final word on sequentially composable bidirectional
programs. In all three applications, round-tripping properties are similarly split
into well-behavedness, which is weaker than the original property but com-
positional, and alignment, which is equationally friendly. An open question is
whether an underlying structure can be formalized, perhaps based on an adjunc-
tion model, that captures more concretely bidirectional programs than monadic
profunctors. Moreover, partiality is pervasive in our development, and the com-
position patterns captured by quasicompositionality require discipline and are
still prone to error. We hope to develop tools and methods, such as type systems
to automatically ensure correct usage of these patterns and guarantee composi-
tional properties.
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