
Defunctionalization

1

Li-yao Xia - PLClub - UPenn - April 24, 2020

Defunctionalization

● Often viewed as a (subpar) compilation technique
● But quietly pulls its weight in day-to-day programming
● A general tool for understanding programs

2

What is defunctionalization?

3

General idea

4

Program

Rewrite a program to remove higher-order functions.

... (\x -> isRed x) ...

... (\x -> isYellow x) ...

... (\x -> x == y) ...

... (\x -> p x && q x) ...

... f z ...

5

"All problems in computer science
can be solved by

another level of indirection.”

Famous saying

6

Replace all lambdas with fresh symbols.
Replace all function applications with calls to “apply”.

... (\x -> isRed x) ...

... (\x -> isYellow x) ...

... (\x -> x == y) ...

... (\x -> p x && q x) ...

... f z ...

Program Defunctionalized program, part 1

... IsRed ...

... IsYellow ...

... (Equals y) ...

... (And p q) ...

... apply(fsym, z) ...

7

Free variables in lambdas
get captured in the corresponding symbol.

... (\x -> isRed x) ...

... (\x -> isYellow x) ...

... (\x -> x == y) ...

... (\x -> p x && q x) ...

... f z ...

... IsRed ...

... IsYellow ...

... (Equals y) ...

... (And p q) ...

... apply(fsym, z) ...

Program Defunctionalized program, part 1

8

The symbols are constructors of a data type.
apply is a first-order function defined by pattern-matching.

... (\x -> isRed x) ...

... (\x -> isYellow x) ...

... (\x -> x == y) ...

... (\x -> p x && q x) ...

... f z ...

data Fun
 = IsRed
 | IsYellow
 | Equals Color
 | And Fun Fun

apply(IsRed, x) = isRed x
...
apply(Equals c, d) = (c == d)
...

Program Defunctionalized program, part 2

9

Where does it come from?

A bit of history

10

“In this paper, we will describe and classify
several varieties of [definitional] interpreters.”

John C. Reynolds,
in Definitional interpreters for higher-order languages (1972)

Already presented as a programming technique rather than a compilation
technique (even though the two views are closely related).

Defunctionalization for compilation

● Often overshadowed by closure conversion.

11

Defunctionalized functions
“are equivalent to (...) closures.”

John C. Reynolds (1972)

???The same, but different?

Defunctionalization vs closures

12

... (\x -> x == y) ...

globalfun(y, x) = (x == y)

... (*, y) ...

A pointer to a closed function

apply(Equals y, x) = (x == y)

... (Equals y) ...

A constructor, i.e., a “tag”

Value(s) of the free variable(s) in the original lambda
(now parameters of apply/the closed function)

Defunctionalization vs closures

13

data Fun
 = IsRed
 | IsYellow
 | Equals Color
 | And Fun Fun

∃e. ((e × a) #-># b) × e

Algebraic data type Existential type

Only “global functions”
(just a pointer).

Much more Fun to program with!

a -> b

For compilers...

● apply adds an unnecessary level of indirection
● Defun. enumerates all lambdas

→ full program compilation, lack of compositionality
● But pointer + existential takes away all the Fun!

14

And actually not true!
(Hint: ML modules)

Defunctionalization as modular closure conversion, Ulrich Schöpp, PPDP 2017

For programmers...

● Data types + functions = programming 101
● Easy to readapt: customize apply, use multiple data

types, e.g., distinguish by function type.

15

The best refactoring you’ve never heard of

● Summary: Replace functions with a concrete
representation + interpreter (apply).

● Easy to do by hand, and to readapt!

Benefits include:

● Serializability (store and send functions!)
● Performance (fancy recursive algorithms (a priori slow) =

fast state machines)

16

Title of a Compose 2019 talk, by James Koppel. Check it out!

Defunctionalize the continuation!

17

sum [] = 0
sum (x : xs)
 = x + sum xs

sum’’ [] acc = acc
sum’’ (x : xs) acc
 = sum’’ xs (x + acc)

sum’ [] k = k 0
sum’ (x : xs) k
 = sum’ xs (\y -> k (x + y))

CPS

sum (1 : 2 : 3 : ...)
 = 1 + (2 + (3 + sum ...))

Linear space

sum’’ (1 : 2 : 3 : ...) 0
 = sum’’ ... 6

k is always (\y -> x1 + (x2 + ... + y))
k is always (\y -> acc + y)

Constant space

Defunctionalize

Slogan from the same Compose 2019 talk, by James Koppel

Functional Programming
in an Emergency

18

Emergency [noun]
Situation where a functional programming language
is not used

Emergency Functional Programming

How to solve any {PROBLEM}:

● “{PROBLEM} can be solved with higher-order functions...”
● “... but I’m using {BAD_PL}.”
● ✱Puts on Defunctionalization goggles✱
● “Oh, {BAD_PL} has higher-order functions,

it’s almost a good PL.”

19

Three examples
of {BAD_PL}

1. OCaml
2. Haskell
3. Coq

20

1. {BAD_PL} = OCaml

21

{BAD_PL} = OCaml

The Monad Problem: not (quite) having monads.1

22
1 This might be an unfair exaggeration for comedic purposes.

-- Haskell
return :: Monad m => a -> m a

One overloaded operation for all monads:
some operations can be defined for all
monads, once and for all.

(* OCaml *)
val async_return : ‘a -> ‘a async_m
val qc_return : ‘a -> ‘a qc_m
val etc_return : ‘a -> ‘a etc_m

Can’t generalize over monads m.

No higher-kinded types in OCaml

In OCaml, type variables (‘a, ‘b, ...) only range over types...

‘a list

... not type constructors (“type → type”; list, option, _ * _).

‘a ‘m (* nonsense! *)

See also: every PL more popular than Haskell.

23

No higher-kinded types in OCaml

In case of emergency, use defunctionalization!

Defunctionalize type constructors:

 m a will be denoted by apply(msym, a)

‘a ‘m will be denoted by (‘a,‘msym) apply

Lightweight higher-kinded polymorphism, Jeremy Yallop, Leo White, FLP 2014

24

No higher-kinded types in OCaml

(* Polymorphic return in OCaml *)
val return : ‘msym monad -> ‘a -> (‘a,’msym) apply

(* return :: Monad m => a -> m a -- in Haskell *)

Some manual conversions are required, but at least it works:

val wrap_list : ‘a list -> (‘a, listsym) apply
val unwrap_list : (‘a, listsym) apply -> ‘a list

“Oh, OCaml has higher-kinded types, it’s almost a good PL.”
25

2. {BAD_PL} = Haskell

26

{BAD_PL} = Haskell

27

“Haskell can’t be that bad. It even has type families!”

type family Map (f :: a -> b) (xs :: [a]) :: [b] where
 Map f [] = []
 Map f (x : xs) = f x : Map f xs
-- This is valid Haskell.

No higher-order type families in Haskell

“Wait a second...”

Map :: (a -> b) -> [a] -> [b] -- Looks pretty H-O...?

Try this:

type family Snd (xy :: (a, b)) :: b where
 Snd (x, y) = y

28

ghci> :kind! Map Snd [(1,”One”), (2, “Two”)]
<A WILD TYPE ERROR APPEARS>

No higher-order type families in Haskell

type family Map (f :: a -> b) (xs :: [a]) :: [b] where

type family Snd (xy :: (a, b)) :: b where

Map Snd ... -- Illegal

29

Only type constructors (Maybe, []), not the same as type families (Map, Snd)..

Key distinction: type families cannot be partially applied (always “Snd something”)

This limitation might disappear in the near future:
Higher-order type-level programming in Haskell, Csongor Kiss et al, ICFP 2019.

No higher-order type families in Haskell

In case of emergency, use defunctionalization!

type a ~> b -- Defunctionalized type families
type family Apply (fsym :: a ~> b) (x :: a) :: b

type family Map (fsym :: a ~> b) (xs :: [a]) :: [b] where
 Map fsym [] = []
 Map fsym (x : xs) = Apply fsym x : Map fsym xs

30

Promoting functions to type families in Haskell,
Richard A. Eisenberg, Jan Stolarek, Haskell Symposium 2014

No higher-order type families in Haskell

data SndSym :: (a, b) ~> b -- Defunctionalized!
type instance Apply SndSym (x, y) = y

31

ghci> :kind! Map SndSym [(1,”One”), (2, “Two”)]
[“One”, “Two”] :: [Symbol]

“Oh, Haskell has higher-order type families, it’s almost a good PL.”

Note: Symbol is the kind of type-level strings in Haskell (has nothing to do with defun. symbols).

3. {BAD_PL} = Coq

32

{BAD_PL} = Coq

Coq is a total language: all functions terminate.

Restrictions on recursive definitions.

Cofixpoints must be productive.

CoFixpoint ones := Cons 1 ones.

CoFixpoint bad := bad. (* Rejected *)

33

No general recursion in a total language

34

We have Proof General,
but this has nothing to do with the topic.

No general recursion in a total language

(* Fixed point of a function f. Solve for nu: nu = f nu *)
(* e.g., f ones := Cons 1 ones leads to nu = ones from the pv. slide *)
CoFixpoint mfix (f : Stream a -> Stream a) : Stream a :=
 f (mfix f). (* Rejected *)

35

f might inspect the very stream we are in the middle of constructing!

The expression mfix f, although it has type Stream a, must be used
according to very restrictive rules: it is not truly a first-class value.

No general recursion in a total language

In case of emergency, use defunctionalization!

(* Defunctionalized Streams (instead of functions) *)
Inductive StrSym a : Type := NuSym | ...

Definition apply : StrSym a -> Stream a -> Stream a := ...

CoFixpoint mfix (f : StrSym a -> StrSym a) : Stream a :=
 apply (f NuSym) (mfix f).

36

apply guaranteed to not inspect mfix f,
just places it wherever apply finds NuSym

“Oh, Coq has general recursion, it’s almost a good PL.”

Defun-zed (mfix f)

The details get hairy very quickly; see references in last slide and presenter notes for more.

Defunctionalization

1. Higher-kinded types for OCaml
2. Higher-order type families for Haskell
3. General recursion for Coq

37

References (Defun. and closures)
The appearance of defunctionalization:
- Definitional interpreters for higher-order programming languages, John C. Reynolds, ACM 1972 (this link
is actually a reprint of the original version)

Among the earliest references (if not the one) for closures and closure conversion:
- The mechanical evaluation of expressions, Peter Landin, The Computer Journal, 1964

Closure conversion + existential types:
- Typed closure conversion, Minamide, Morrisett, Harper, POPL 1996.

For the claim that defunctionalization can be made modular, using ML modules:
- Defunctionalization as modular closure conversion, Ulrich Schöpp, PPDP 2017, (<- in this and related
papers: game semantics!)
I heard of this thanks to an online comment by Neel Krishnaswamy on a SIGPLAN blogpost by James
Koppel (see next slide)

38

References (Defun. in practice)
A very fun introduction to defunctionalization:
- The best refactoring you’ve never heard of, James Koppel, Compose 2019 talk & transcript
- Defunctionalization; everybody does it, nobody talks about it, James Koppel, SIGPLAN blog, 2019
(condensed version of the talk)

- Defunctionalization at work, Olivier Danvy, Lasse R. Nielsen, extended version of a PPDP 2001 paper.
- Refunctionalization at work (2009) also seems like a good follow-up

39

References (“Defun. in an Emergency of {BAD_PL}”)
OCaml, encoding higher-kinded types:

● Lightweight higher-kinded polymorphism, Jeremy Yallop, Leo White, FLP 2014

Haskell, encoding higher-order type families (or actually adding them to the language, see ICFP 2019):

● Higher-order type-level programming in Haskell, Csongor Kiss et al, ICFP 2019
● Promoting functions to type families in Haskell, Richard A. Eisenberg, Jan Stolarek, Haskell

Symposium 2014
● Defunctionalization for the win, Richard A. Eisenberg, blog

Coq (and siblings), encoding general recursion:

● Turing Completeness Totally Free, Conor McBride, unpublished manuscript (?)
● Compositional coinductive recursion in Coq, Gregory Malecha, blog
● Interaction trees, Li-yao Xia et al., POPL 2020

40

cf. title slide near the middle

