PENN

PL
Defunctionalization '

Li-yao Xia - PLClub - UPenn - April 24, 2020

Defunctionalization

e Often viewed as a (subpar) compilation technique
e But quietly pulls its weight in day-to-day programming
e A general tool for understanding programs

What is defunctionalization?

General idea

Rewrite a program to remove higher-order functions.

Program

. (\x -> isRed x) ...

. (\x -> isYellow x) ...
. (\x -> x ==y) ...

. (\x -> p x & q x) ...

. fz ...

Famous saying

'All problems in computer science
can be solved by
another level of indirection.”’

Replace all lambdas with fresh symbols.
Replace all function applications with calls to "apply’.

Program Defunctionalized program, part 1
. (\x -> isRed x) IsRed ...
. (\x -> isYellow x) IsYellow ...
. (\x -> x ==y) (Equals y) ...
. (\x -> p x & q x) (And p q) ...
. fz apply(fsym, z) ...

Free variables in lambdas
get captured in the corresponding symbol.

Program Defunctionalized program, part 1

oo (\x -> x ==y) (Equals y) ...

.. (\x > p x & q x) (And p q) ...

The symbols are constructors of a data type.

apply is a first-order function defined by pattern-matching.

Program

. (\x
. (\x
. (\x
. (\x

-> isRed x) ...

-> isYellow x) ...

-> X ==Yy) ...

->p x & q x) ...

. fz ...

Defunctionalized program, part 2

data Fun
= IsRed
| IsYellow
| Equals Color
| And Fun Fun

apply(IsRed, x) = isRed x

apply(Equals ¢, d) = (c == d)

Where does it come from?

A bit of history

“In this paper, we will describe and classify
several varieties of [definitionall] interpreters.”

John C. Reynolds,
in Definitional interpreters for higher-order languages (1972)

Already presented as a programming technique rather than a compilation
technique (even though the two views are closely related).

10

Defunctionalization for compilation

e Often overshadowed by

Defunctionalized functions
‘are equivalent to (...)
John C. Reynolds (1972)

The same, but different? , , ,

Defunctionalization vs

r oo (\x > x ==y) ... ﬂ

(Equals vy) , Y)
o | £
A constructor, i.e, a ‘tag” to a closed function
\

Value(s) of the free variable(s) in the original lambda
(now parameters of apply/the closed function)

apply(Equals y, x) = (x ==y) ‘ \‘globalfun(y, x) = (x ==y)

12

Defunctionalization

P
Algebraic data type

data Fun
= IsRed
| IsYellow
| Equals Color
| And Fup Fun

Much more Fun to program with!

VS

a->>b

- 1

e. ((e x a)

b) x e

Only “global functions’

(just a

).

13

For compilers...

e apply adds an unnecessary level of indirection
e Defun. enumerates all lambdas

— full program compilation, lack of compositionality
e But takes away all the Fun! 1‘

And actually not true!
(Hint: ML modules)

Defunctionalization as modular closure conversion, Ulrich Schopp, PPDP 2017

14

For programmers...

e Data types + functions = programming 101
e Easyto readapt: customize apply, use multiple data
types, e.g., distinguish by function type.

15

Title of a Compose 2019 talk, by James Koppel. Check it out!

The best refactoring you've never heard of

e Summary: Replace functions with a concrete
representation + interpreter (apply).
e Easyto do by hand, and to readapt!

Benefits include;

e Serializability (store and send functions!)
e Performance (fancy recursive algorithms (a priori slow) =
fast state machines)

16

Slogan from the same Compose 2019 talk, by James Koppel

Defunctionalize the continuation!

sum [] = © CPS
sum (X : XS) —
= X + sum XS
sum (1T : 2 : 3 : ...)
=1+ (2 + (3 + sum ...))
Lineargpace
sum”” (1 : 2 : 3 .) ©

= sum’'’ ... 6

H_J
Constant space

sum’ [] k =k 0
sum’ (x : xs) k
= sum’ xs (\y -> k (x +vy))

kisalways (\y -> x1 + (x2 + ... +y))
(\y -> acc + y)

‘ Defunctionalize

1)

sum [] acc = acc

1)

sum’’ (x : xs) acc
= sum’’ xs (x + acc)

17

Functional Programming
in an Emergency

Emergency [noun]
Situation where a functional programming language

IS not used

Emergency Functional Programming
How to solve any {PROBLEMLI:

{PROBLEMLI can be solved with higher-order functions..”
".. but I'm using {BAD_PL}’

*¥ Puts on Defunctionalization goggles %

"Oh, {BAD_PL} has higher-order functions,

It's almost a good PL’

19

1. OCaml

Three examples > Hackell
of {BAD_PL] e

1. {BAD_PL} = OCaml

{BAD_PL} =0Caml

The Monad Problem: not (quite) having monads.*

-- Haskell (* OCaml =)
return :: Monad m => a -> m a async_return : ‘a -> ‘a async_m
gc_return : ‘a -> ‘a gc_m
etc_return : ‘a -> ‘a etc_m
One overloaded operation for all monads: Can'’t generalize over monads m.

some operations can be defined for all
monads, once and for all.

! This might be an unfair exaggeration for comedic purposes.

22

No higher-kinded types in OCaml

In OCaml, type variables (“a, ‘b, ..) only range over types..

‘a list

.. not type constructors ("type — type”; 1list, option, _ * _).

f 1

a 'm (* nonsense! *)

See also: every PL more popular than Haskell,

23

Ne higher-kinded types in OCaml

In case of emergency, use defunctionalization!
Defunctionalize type constructors:
m a will be denoted by apply(msym, a)

{

a ‘mwill be denoted by (‘a, ‘msym) apply

Lightweight higher-kinded polymorphism, Jeremy Yallop, Leo White, FLP 2014

24

Ne higher-kinded types in OCaml

(* Polymorphic return in OCaml *)
return : ‘msym monad -> ‘a -> (‘a, 'msym) apply

(* return :: Monad m => a -> ma -- in Haskell *)

Some manual conversions are required, but at least it works:
wrap_list : ‘a list -> (‘'a, listsym) apply
unwrap_list : (‘a, listsym) apply -> ‘a list

‘Oh, OCaml has higher-Rinded types, it's almost a good PL."

25

2. {BAD_PL} = Haskell

{BAD_PL} = Haskell

‘Haskell can't be that bad. It even has type families!”

type family Map (f :: a -> b) (xs :: [a]) :: [b] where
Map f [] = []
Map f (x : xs) = f x : Map f xs

-- This is valid Haskell.

27

No higher-order type families in Haskell

‘Wait a second...”
Map :: (a -> b) -> [a] -> [b] -- Looks pretty H-0...?
Try this:

type family Snd (xy :: (a, b)) :: b where
snd (x, y) =y

ghci> :kind! [(1,"0ne”), (2, “Two”)]

<A WILD TYPE ERROR APPEARS>

28

No higher-order type families in Haskell

type family Map (f :: a -> b) (xs :: [a]) :: [b] where

/
Only type constructors (Maybe, []), not the same as type families (Map, Snd).

type family Snd (xy :: (a, b)) :: b where

\

Key distinction: type families cannot be partially applied (always “Snd something”)

/
Map Snd ...

This limitation might disappear in the near future:
Higher-order type-level programming in Haskell, Csongor Kiss et al, ICFP 2019.

29

Ne higher-order type families in Haskell

In case of emergency, use defunctionalization!

type a ~> b -- Defunctionalized type families
type family Apply (fsym :: a ~>b) (x :: a) :: b

type family Map (fsym :: a ~> b) (xs :: [a]) :: [b] where
Map fsym [] = []

Map fsym (x : xs) = Apply fsym x : Map fsym xs

Promoting functions to type families in Haskell,
Richard A. Eisenberg, Jan Stolarek, Haskell Symposium 2014

30

Ne higher-order type families in Haskell

data SndSym :: (a, b) ~> b -- Defunctionalized!
type instance Apply SndSym (x, y) =y

ghci> :kind! [(1,"0ne”), (2, “Two")]

[Hone"’ HTWO"] : : [Symb01]

Note: Symbol is the kind of type-level strings in Haskell (has nothing to do with defun. symbols).

‘Oh, Haskell has higher-order type families, it's almost a good PL."

31

3. {BAD_PL} = Coq

{BAD_PL} = Coq
Coq is a total language: all functions terminate.
Restrictions on recursive definitions.
Cofixpoints must be productive.

CoFixpoint ones := Cons 1 ones.

CoFixpoint bad := bad. (* Rejected *)

33

No general recursion in a total language

We have Proof General,
but this has nothing to do with the topic.

34

No general recursion in a total language

CoFixpoint mfix (f : Stream a -> Stream a) : Stream a
f (mfix f).\
\

T might inspect the very stream we are in the middle of constructing!

The expression mfix f, although it has type Stream a, must be used
according to very restrictive rules: it is not truly a first-class value.

35

Ne general recursion in a total language

In case of emergency, use defunctionalization!

(*# Defunctionalized Streams (instead of functions) *)
Inductive StrSym a : Type := NuSym |

Definition apply : StrSym a -> Stream a -> Stream a :=

CoFixpoint mfix (f : StrSym a -> StrSym a) : Stream a
apply (f NuSym) (mfix f).

apply guaranteed to not inspect mfix f,
just places it wherever apply finds NuSym

‘Oh, Coq has general recursion, it's almost a good PL.”

The details get hairy very quickly; see references in last slide and presenter notes for more.

36

Defunctionalization

1. Higher-kinded types for OCaml
2. Higher-order type families for Haskell
3. General recursion for Coq

37

References (Defun. and closures)

The appearance of defunctionalization:

- Definitional interpreters for higher-order programming languages, John C. Reynolds, ACM 1972 (this link
is actually a reprint of the original version)

Among the earliest references (if not the one) for closures and closure conversion:
- The mechanical evaluation of expressions, Peter Landin, The Computer Journal, 1064

Closure conversion + existential types:
- Typed closure conversion, Minamide, Morrisett, Harper, POPL 1996.

For the claim that defunctionalization can be made modular, using ML modules:

- Defunctionalization as modular closure conversion, Ulrich Schépp, PPDP 2017, (<- in this and related
papers: game semantics!)

| heard of this thanks to an online comment by Neel Krishnaswamy on a SIGPLAN blogpost by James
Koppel (see next slide)

38

References (Defun. in practice)

A very fun introduction to defunctionalization:
- The best refactoring you've never heard of, James Koppel, Compose 2019 talk & transcript

- Defunctionalization; everybody does it, nobody talks about it, James Koppel, SIGPLAN blog, 2019
(condensed version of the talk)

- Defunctionalization at work, Olivier Danvy, Lasse R. Nielsen, extended version of a PPDP 2001 paper.
- Refunctionalization at work (2009) also seems like a good follow-up

39

cf. title slide near the middle

/

References (“Defun. in an Emergency of {BAD_PL}")

OCaml, encoding higher-kinded types:

e [ightweight higher-kinded polymorphism, Jeremy Yallop, Leo White, FLP 2014

Haskell, encoding higher-order type families (or actually adding them to the language, see ICFP 2019):

e Higher-order type-level programming in Haskell, Csongor Kiss et al, ICFP 2019

e Promoting functions to type families in Haskell, Richard A. Eisenberg, Jan Stolarek, Haskell
Symposium 2014

e Defunctionalization for the win, Richard A. Eisenberg, blog

Coq (and siblings), encoding general recursion:

e Juring Completeness Totally Free, Conor McBride, unpublished manuscript (?)
e Compositional coinductive recursion in Coq, Gregory Malecha, blog
e |nteraction trees, Li-yao Xia et al., POPL 2020

40

