
Composing
bidirectional programs

monadically

Li-yao Xia,1 Dominic Orchard,2 Meng Wang,3

1University of Pennsylvania
2University of Kent 3University of Bristol

ESOP 2019, April 8

1 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.

2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.

2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.

2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.

2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.

2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Parsers - printers

String AST

\x -> x parse-> Fun "x" (Var "x")

<-print

I Lenses (getters - setters)

Source (Database) View (Row)

(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)

↓
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)

Subject to “round-tripping laws”.
2 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Random generators - predicates
randomSortedList :: Prob [Int]

isSortedList :: [Int] -> Bool

I For random testing of invariants
dropSorted :: Property -- Using QuickCheck

dropSorted =

forAll randomSortedList (\ (xs :: [Int]) ->

isSortedList (drop 1 xs)))

I “Round-trip”:

P(randomSortedList = [1,2,3]) > 0

isSortedList [1,2,3] = True

3 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Random generators - predicates
randomSortedList :: Prob [Int]

isSortedList :: [Int] -> Bool

I For random testing of invariants
dropSorted :: Property -- Using QuickCheck

dropSorted =

forAll randomSortedList (\ (xs :: [Int]) ->

isSortedList (drop 1 xs)))

I “Round-trip”:

P(randomSortedList = [1,2,3]) > 0

isSortedList [1,2,3] = True

3 / 28

Composing bidirectional programs monadically

Pairs of programs in “opposite directions”.

I Random generators - predicates
randomSortedList :: Prob [Int]

isSortedList :: [Int] -> Bool

I For random testing of invariants
dropSorted :: Property -- Using QuickCheck

dropSorted =

forAll randomSortedList (\ (xs :: [Int]) ->

isSortedList (drop 1 xs)))

I “Round-trip”:

P(randomSortedList = [1,2,3]) > 0

isSortedList [1,2,3] = True

3 / 28

Composing bidirectional programs monadically

I General idea: same relation viewed in two
directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single
description?

2. What round-tripping guarantees to expect?
I forall v. parse (print v) = v

I Lens laws: get (set s v) = v

I Soundness/completeness of generators

Running example for this talk: parsers - printers.

4 / 28

Composing bidirectional programs monadically

I General idea: same relation viewed in two
directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single
description?

2. What round-tripping guarantees to expect?
I forall v. parse (print v) = v

I Lens laws: get (set s v) = v

I Soundness/completeness of generators

Running example for this talk: parsers - printers.

4 / 28

Composing bidirectional programs monadically

I General idea: same relation viewed in two
directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single
description?

2. What round-tripping guarantees to expect?

I forall v. parse (print v) = v

I Lens laws: get (set s v) = v

I Soundness/completeness of generators

Running example for this talk: parsers - printers.

4 / 28

Composing bidirectional programs monadically

I General idea: same relation viewed in two
directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single
description?

2. What round-tripping guarantees to expect?
I forall v. parse (print v) = v

I Lens laws: get (set s v) = v

I Soundness/completeness of generators

Running example for this talk: parsers - printers.

4 / 28

Composing bidirectional programs monadically

I General idea: same relation viewed in two
directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single
description?

2. What round-tripping guarantees to expect?
I forall v. parse (print v) = v

I Lens laws: get (set s v) = v

I Soundness/completeness of generators

Running example for this talk: parsers - printers.

4 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:

I DSL as library (= EDSL).
I Fitting within host language poses design

challenges.
I “Round-tripping” properties usually

preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?
I We can try to adapt known abstractions.

5 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:
I DSL as library (= EDSL).

I Fitting within host language poses design
challenges.

I “Round-tripping” properties usually
preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?
I We can try to adapt known abstractions.

5 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:
I DSL as library (= EDSL).
I Fitting within host language poses design

challenges.

I “Round-tripping” properties usually
preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?
I We can try to adapt known abstractions.

5 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:
I DSL as library (= EDSL).
I Fitting within host language poses design

challenges.
I “Round-tripping” properties usually

preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?
I We can try to adapt known abstractions.

5 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:
I DSL as library (= EDSL).
I Fitting within host language poses design

challenges.
I “Round-tripping” properties usually

preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?

I We can try to adapt known abstractions.

5 / 28

Composing bidirectional programs monadically

I Present approach: combinators to compose
bidirectional programs. Typical features:
I DSL as library (= EDSL).
I Fitting within host language poses design

challenges.
I “Round-tripping” properties usually

preserved by combinators (compositionality).
A more complicated story here.

I What combinators to choose?
I We can try to adapt known abstractions.

5 / 28

Monads

I A general interface to compose programs.

-- M :: Type -> Type

(>>=) :: M a -> (a -> M b) -> M b

return :: a -> M a

-- + monad laws

I Example: monadic parser (M = Parser).

parseString :: Parser String -- String = [Char]

parseString =

parseInt >>= (\ (n :: Int) ->

replicateM n parseChar)

parseInt :: Parser Int

parseChar :: Parser Char

replicateM :: Int -> Parser a -> Parser [a]

6 / 28

Monads

I A general interface to compose programs.

-- M :: Type -> Type

(>>=) :: M a -> (a -> M b) -> M b

return :: a -> M a

-- + monad laws

I Example: monadic parser (M = Parser).

parseString :: Parser String -- String = [Char]

parseString =

parseInt >>= (\ (n :: Int) ->

replicateM n parseChar)

parseInt :: Parser Int

parseChar :: Parser Char

replicateM :: Int -> Parser a -> Parser [a]
6 / 28

Monads, an unlikely candidate

I Monads (e.g., parsers) are covariant functors.

type Parser a = [Char] -> (a, [Char])

fmap :: (a -> b) -> Parser a -> Parser b

-- Definable from (>>=) and return

I Printers are contravariant.

type Printer a = a -> [Char]

comap :: (b -> a) -> Printer a -> Printer b

-- can be defined

7 / 28

Monads, an unlikely candidate

I Monads (e.g., parsers) are covariant functors.

type Parser a = [Char] -> (a, [Char])

fmap :: (a -> b) -> Parser a -> Parser b

-- Definable from (>>=) and return

I Printers are contravariant.

type Printer a = a -> [Char]

comap :: (b -> a) -> Printer a -> Printer b

-- can be defined

7 / 28

Can a type be both covariant and contravariant?

fmap :: (a -> b) -> M a -> M b

comap :: (b -> a) -> M a -> M b

1. No, it would be phantom: the definition of (M a)

couldn’t use a.

2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)

invmap :: (a <-> b) -> M a -> M b

(Popular approach in related work.)

3. Yes, with a twist: profunctors.

8 / 28

Can a type be both covariant and contravariant?

fmap :: (a -> b) -> M a -> M b

comap :: (b -> a) -> M a -> M b

1. No, it would be phantom: the definition of (M a)

couldn’t use a.

2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)

invmap :: (a <-> b) -> M a -> M b

(Popular approach in related work.)

3. Yes, with a twist: profunctors.

8 / 28

Can a type be both covariant and contravariant?

fmap :: (a -> b) -> M a -> M b

comap :: (b -> a) -> M a -> M b

1. No, it would be phantom: the definition of (M a)

couldn’t use a.

2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)

invmap :: (a <-> b) -> M a -> M b

(Popular approach in related work.)

3. Yes, with a twist: profunctors.

8 / 28

Can a type be both covariant and contravariant?

fmap :: (a -> b) -> M a -> M b

comap :: (b -> a) -> M a -> M b

1. No, it would be phantom: the definition of (M a)

couldn’t use a.

2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)

invmap :: (a <-> b) -> M a -> M b

(Popular approach in related work.)

3. Yes, with a twist: profunctors.

8 / 28

Profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Monadic profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Monadic profunctors

I Covariance, contravariance, pick two.

-- P :: Type -> Type -> Type

fmap :: (a -> b) -> P x a -> P x b

comap :: (b -> a) -> P a y -> P b y

I New mix: for any x, (P x) is a monad

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- Definable from (>>=) and return

fmap :: (a -> b) -> P x a -> P x b

9 / 28

Monadic profunctors

I In summary, minimal definition:

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- forall x. Monad (P x)

comap :: (b -> a) -> P a y -> P b y

I Take Monad, add one more type parameter and
one more function, that’s all we need for
bidirectional programming.

I This work: study properties of this simple
interface.

10 / 28

Monadic profunctors

I In summary, minimal definition:

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- forall x. Monad (P x)

comap :: (b -> a) -> P a y -> P b y

I Take Monad, add one more type parameter and
one more function, that’s all we need for
bidirectional programming.

I This work: study properties of this simple
interface.

10 / 28

Monadic profunctors

I In summary, minimal definition:

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- forall x. Monad (P x)

comap :: (b -> a) -> P a y -> P b y

I Take Monad, add one more type parameter and
one more function, that’s all we need for
bidirectional programming.

I This work: study properties of this simple
interface.

10 / 28

Parser monad (again)

parseString :: Parser String

parseString =

parseInt >>= (\n ->

replicateM n parseChar)

-- assuming

parseInt :: Parser Int

parseChar :: Parser Char

replicateM :: Int -> Parser a -> Parser [a]

11 / 28

Bidirectional parser profunctor monad

biparseString :: Biparser String String

biparseString =

comap length biparseInt >>= (\n ->

replicateP n biparseChar)

-- assuming

biparseInt :: Biparser Int Int

biparseChar :: Biparser Char Char

replicateP :: Int -> Biparser x a -> Biparser [x] [a]

I Both a parser and a printer.

12 / 28

Bidirectional parser profunctor monad

biparseString :: Biparser String String

biparseString =

comap length biparseInt >>= (\n ->

replicateP n biparseChar)

-- assuming

biparseInt :: Biparser Int Int

biparseChar :: Biparser Char Char

replicateP :: Int -> Biparser x a -> Biparser [x] [a]

I Both a parser and a printer.

12 / 28

Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type

comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- i.e., forall x. Monad (P x)

I Three monadic profunctors:

type Parser' x a = ([Char] -> (a, [Char])) -- Parser a

type Printer x a = (x -> ([Char], a))

type Biparser x a = (Parser' x a, Printer x a)

-- Parser-printer pairs

13 / 28

Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type

comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- i.e., forall x. Monad (P x)

I Three monadic profunctors:

type Parser' x a = ([Char] -> (a, [Char])) -- Parser a

type Printer x a = (x -> ([Char], a))

type Biparser x a = (Parser' x a, Printer x a)

-- Parser-printer pairs

13 / 28

Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type

comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- i.e., forall x. Monad (P x)

I Three monadic profunctors:

type Parser' x a = ([Char] -> (a, [Char])) -- Parser a

type Printer x a = (x -> ([Char], a))

type Biparser x a = (Parser' x a, Printer x a)

-- Parser-printer pairs

13 / 28

Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type

comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

return :: a -> P x a

-- i.e., forall x. Monad (P x)

I Three monadic profunctors:

type Parser' x a = ([Char] -> (a, [Char])) -- Parser a

type Printer x a = (x -> ([Char], a))

type Biparser x a = (Parser' x a, Printer x a)

-- Parser-printer pairs

13 / 28

A concrete example in detail

comap length biparseInt :: Biparser [Char] Int

I As a parser:
parseInt :: Parser Int -- comap is erased

I As a printer:
(\ s -> let n = length s in

(printInt n, n))

:: [Char] -> ([Char] , Int)

-- Printer [Char] Int

-- ^ ^ result, printed value

-- ^ "context" around value to print

-- given

printInt :: Int -> [Char]

14 / 28

A concrete example in detail

comap length biparseInt :: Biparser [Char] Int

I As a parser:
parseInt :: Parser Int -- comap is erased

I As a printer:
(\ s -> let n = length s in

(printInt n, n))

:: [Char] -> ([Char] , Int)

-- Printer [Char] Int

-- ^ ^ result, printed value

-- ^ "context" around value to print

-- given

printInt :: Int -> [Char]

14 / 28

A concrete example in detail

comap length biparseInt :: Biparser [Char] Int

I As a parser:
parseInt :: Parser Int -- comap is erased

I As a printer:
(\ s -> let n = length s in

(printInt n, n))

:: [Char] -> ([Char] , Int)

-- Printer [Char] Int

-- ^ ^ result, printed value

-- ^ "context" around value to print

-- given

printInt :: Int -> [Char]

14 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

A general recipe of profunctor monads

I “Forward” and “backward” profunctor monads.

type Fwd m x a = m a

type Parser' x a = [Char] -> (a, [Char]) --

type Parser' x a = Fwd (State [Char]) x a -- same

type Bwd n x a = x -> n a

type Printer x a = x -> ([Char], a) --

type Printer x a = Bwd (Writer [Char]) x a -- same

type (p :*: q) x a = (p x a, q x a)

type Biparser x a = (Parser' :*: Printer) x a

I What relation between m in Fwd m and n in Bwd n?
(unsolved)

15 / 28

Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a

print :: Biparser a a -> a -> [Char]

I p :: Biparser a a is forward round-tripping if
parse p s = Just a -> print p a = s

I p :: Biparser a a is backward round-tripping if
print p a = s -> parse p s = Just a

parse p (print p a) = Just a -- equivalently

I Sadly, round-tripping (bwd or fwd) is not
guaranteed by construction!
comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

16 / 28

Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a

print :: Biparser a a -> a -> [Char]

I p :: Biparser a a is forward round-tripping if
parse p s = Just a -> print p a = s

I p :: Biparser a a is backward round-tripping if
print p a = s -> parse p s = Just a

parse p (print p a) = Just a -- equivalently

I Sadly, round-tripping (bwd or fwd) is not
guaranteed by construction!
comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

16 / 28

Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a

print :: Biparser a a -> a -> [Char]

I p :: Biparser a a is forward round-tripping if
parse p s = Just a -> print p a = s

I p :: Biparser a a is backward round-tripping if
print p a = s -> parse p s = Just a

parse p (print p a) = Just a -- equivalently

I Sadly, round-tripping (bwd or fwd) is not
guaranteed by construction!
comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

16 / 28

Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a

print :: Biparser a a -> a -> [Char]

I p :: Biparser a a is forward round-tripping if
parse p s = Just a -> print p a = s

I p :: Biparser a a is backward round-tripping if
print p a = s -> parse p s = Just a

parse p (print p a) = Just a -- equivalently

I Sadly, round-tripping (bwd or fwd) is not
guaranteed by construction!
comap :: (y -> x) -> P x a -> P y a

(>>=) :: P x a -> (a -> P x b) -> P x b

16 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:

I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,

I but hopefully “easier” to verify than
real round-tripping.

17 / 28

Verifying round-tripping properties

I Baseline, naive verification method: extract
parser, extract printer, check that they match.

I Can we do better by exploiting the shared
structure of biparsers?

I Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

2. Find a property that covers the difference
between weak and “real” round-tripping:
I necessarily non-compositional,
I but hopefully “easier” to verify than

real round-tripping.

17 / 28

Backward round-tripping (print-then-parse)

I Recall backward round-tripping:
print p a = s -> parse p s = Just a

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char])

print' :: Biparser x a -> x -> ([Char], a)

I Weak backward round-tripping:
print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.

18 / 28

Backward round-tripping (print-then-parse)

I Recall backward round-tripping:
print p a = s -> parse p s = Just a

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char])

print' :: Biparser x a -> x -> ([Char], a)

I Weak backward round-tripping:
print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.

18 / 28

Backward round-tripping (print-then-parse)

I Recall backward round-tripping:
print p a = s -> parse p s = Just a

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char])

print' :: Biparser x a -> x -> ([Char], a)

I Weak backward round-tripping:
print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.

18 / 28

Backward round-tripping (print-then-parse)

I Recall backward round-tripping:
print p a = s -> parse p s = Just a

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char])

print' :: Biparser x a -> x -> ([Char], a)

I Weak backward round-tripping:
print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.

18 / 28

Compositionality

WBRT: Weak backward round-tripping

I comap f p is WBRT, if p is WBRT.

I return a is WBRT for all a

I (p >>= \a -> k a) is WBRT, if p is WBRT and
for all a, k a is WBRT.

Only primitives then need to be checked:

I biparseChar is WBRT.

19 / 28

Compositionality

WBRT: Weak backward round-tripping

I comap f p is WBRT, if p is WBRT.

I return a is WBRT for all a

I (p >>= \a -> k a) is WBRT, if p is WBRT and
for all a, k a is WBRT.

Only primitives then need to be checked:

I biparseChar is WBRT.

19 / 28

Purification

I Example: printer component of biparseChar.

type Printer x a = (x -> ([Char], a))

-- Printer Char Char

printChar :: Char -> ([Char], Char)

printChar c = ([c], c)

-- ^ ^

I Key property: printer returns its input.

-- "Pure projection"

projPrinter :: Printer x a -> (x -> a)

projPrinter q x = let (_, a) = q x in a

I for all c :: Char, projPrinter printChar c = c

i.e., projPrinter printChar = id

I “printChar purifies to id.”

20 / 28

Purification

I Example: printer component of biparseChar.

type Printer x a = (x -> ([Char], a))

-- Printer Char Char

printChar :: Char -> ([Char], Char)

printChar c = ([c], c)

-- ^ ^

I Key property: printer returns its input.

-- "Pure projection"

projPrinter :: Printer x a -> (x -> a)

projPrinter q x = let (_, a) = q x in a

I for all c :: Char, projPrinter printChar c = c

i.e., projPrinter printChar = id

I “printChar purifies to id.”

20 / 28

Purification

I Example: printer component of biparseChar.

type Printer x a = (x -> ([Char], a))

-- Printer Char Char

printChar :: Char -> ([Char], Char)

printChar c = ([c], c)

-- ^ ^

I Key property: printer returns its input.

-- "Pure projection"

projPrinter :: Printer x a -> (x -> a)

projPrinter q x = let (_, a) = q x in a

I for all c :: Char, projPrinter printChar c = c

i.e., projPrinter printChar = id

I “printChar purifies to id.”

20 / 28

Purification

I Example: printer component of biparseChar.

type Printer x a = (x -> ([Char], a))

-- Printer Char Char

printChar :: Char -> ([Char], Char)

printChar c = ([c], c)

-- ^ ^

I Key property: printer returns its input.

-- "Pure projection"

projPrinter :: Printer x a -> (x -> a)

projPrinter q x = let (_, a) = q x in a

I for all c :: Char, projPrinter printChar c = c

i.e., projPrinter printChar = id

I “printChar purifies to id.”

20 / 28

Purification

I Example: printer component of biparseChar.

type Printer x a = (x -> ([Char], a))

-- Printer Char Char

printChar :: Char -> ([Char], Char)

printChar c = ([c], c)

-- ^ ^

I Key property: printer returns its input.

-- "Pure projection"

projPrinter :: Printer x a -> (x -> a)

projPrinter q x = let (_, a) = q x in a

I for all c :: Char, projPrinter printChar c = c

i.e., projPrinter printChar = id

I “printChar purifies to id.”
20 / 28

Purification

-- Let P x a = (x -> a)

-- it's a monad

-- it's a profunctor

-- it's a monadic profunctor

I There is a monadic profunctor morphism:

proj :: Biparser u a -> (u -> a)

proj (return a) = return a

proj (p >>= \a -> k a) = proj p >>= \a -> proj (p a)

proj (comap f p) = comap f (proj p)

proj biparseChar = (id :: Char -> Char)

proj biparseInt = (id :: Int -> Int)

21 / 28

Purification

-- Let P x a = (x -> a)

-- it's a monad

-- it's a profunctor

-- it's a monadic profunctor

I There is a monadic profunctor morphism:

proj :: Biparser u a -> (u -> a)

proj (return a) = return a

proj (p >>= \a -> k a) = proj p >>= \a -> proj (p a)

proj (comap f p) = comap f (proj p)

proj biparseChar = (id :: Char -> Char)

proj biparseInt = (id :: Int -> Int)

21 / 28

Purification

-- Let P x a = (x -> a)

-- it's a monad

-- it's a profunctor

-- it's a monadic profunctor

I There is a monadic profunctor morphism:

proj :: Biparser u a -> (u -> a)

proj (return a) = return a

proj (p >>= \a -> k a) = proj p >>= \a -> proj (p a)

proj (comap f p) = comap f (proj p)

proj biparseChar = (id :: Char -> Char)

proj biparseInt = (id :: Int -> Int)

21 / 28

Purification

-- Let P x a = (x -> a)

-- it's a monad

-- it's a profunctor

-- it's a monadic profunctor

I There is a monadic profunctor morphism:

proj :: Biparser u a -> (u -> a)

proj (return a) = return a

proj (p >>= \a -> k a) = proj p >>= \a -> proj (p a)

proj (comap f p) = comap f (proj p)

proj biparseChar = (id :: Char -> Char)

proj biparseInt = (id :: Int -> Int)

21 / 28

Purification and backward round-tripping

proj :: Biparser u a -> (u -> a)

I Biparser p purifies to id: proj p = id

I Point: agnostic to parser-specific details
(i.e., source string manipulations).

I Equational reasoning.
I Recall weak backward round-tripping:

print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.
I Weak backward round-tripping ∧ purifies to id

=⇒ backward round-tripping.

print p a = s -> parse p s = Just a

22 / 28

Purification and backward round-tripping

proj :: Biparser u a -> (u -> a)

I Biparser p purifies to id: proj p = id

I Point: agnostic to parser-specific details
(i.e., source string manipulations).

I Equational reasoning.
I Recall weak backward round-tripping:

print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.
I Weak backward round-tripping ∧ purifies to id

=⇒ backward round-tripping.

print p a = s -> parse p s = Just a

22 / 28

Purification and backward round-tripping

proj :: Biparser u a -> (u -> a)

I Biparser p purifies to id: proj p = id

I Point: agnostic to parser-specific details
(i.e., source string manipulations).

I Equational reasoning.

I Recall weak backward round-tripping:
print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.
I Weak backward round-tripping ∧ purifies to id

=⇒ backward round-tripping.

print p a = s -> parse p s = Just a

22 / 28

Purification and backward round-tripping

proj :: Biparser u a -> (u -> a)

I Biparser p purifies to id: proj p = id

I Point: agnostic to parser-specific details
(i.e., source string manipulations).

I Equational reasoning.
I Recall weak backward round-tripping:

print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.

I Weak backward round-tripping ∧ purifies to id

=⇒ backward round-tripping.

print p a = s -> parse p s = Just a

22 / 28

Purification and backward round-tripping

proj :: Biparser u a -> (u -> a)

I Biparser p purifies to id: proj p = id

I Point: agnostic to parser-specific details
(i.e., source string manipulations).

I Equational reasoning.
I Recall weak backward round-tripping:

print' p x = (s, a)

-> parse' p (s ++ s') = Just (a, s')

I Compositional, i.e., holds by construction.
I Weak backward round-tripping ∧ purifies to id

=⇒ backward round-tripping.

print p a = s -> parse p s = Just a

22 / 28

Forward round-tripping (parse-then-print)

I Weak forward round-tripping
parse' p s = Just (a, s'') -- and

print' p x = (a, s') --

-> s = s' ++ s''

I Quasicompositional: some side conditions
to satisfy!?

I Weak forward round-tripping ∧ purifies to id

=⇒ forward round-tripping.

23 / 28

Forward round-tripping (parse-then-print)

I Weak forward round-tripping
parse' p s = Just (a, s'') -- and

print' p x = (a, s') --

-> s = s' ++ s''

I Quasicompositional: some side conditions
to satisfy!?

I Weak forward round-tripping ∧ purifies to id

=⇒ forward round-tripping.

23 / 28

Forward round-tripping (parse-then-print)

I Weak forward round-tripping
parse' p s = Just (a, s'') -- and

print' p x = (a, s') --

-> s = s' ++ s''

I Quasicompositional: some side conditions
to satisfy!?

I Weak forward round-tripping ∧ purifies to id

=⇒ forward round-tripping.

23 / 28

Compositionality (recall)

WBRT: Weak backward round-tripping

I comap f p is WBRT, if p is WBRT.

I return a is WBRT for all a

I (p >>= \a -> k a) is WBRT, if p is WBRT and
for all a, k a is WBRT.

24 / 28

Quasicompositionality

WFRT: Weak forward round-tripping

I comap f p is WFRT, if p is WFRT.

I return a is WFRT for all a

I (p >>= \a -> k a) is WFRT, if p is WFRT and
for all a, k a is WFRT, and k is an injective
arrow.

I Injectivity generalized to Kleisli arrows.

I k :: v -> m w is an injective arrow if there exists
a function k' :: w -> v such that:

k x >>= (\y -> return (x, y))

= k x >>= (\y -> return (k' y, y))

25 / 28

Quasicompositionality

WFRT: Weak forward round-tripping

I comap f p is WFRT, if p is WFRT.

I return a is WFRT for all a

I (p >>= \a -> k a) is WFRT, if p is WFRT and
for all a, k a is WFRT, and k is an injective
arrow.

I Injectivity generalized to Kleisli arrows.

I k :: v -> m w is an injective arrow if there exists
a function k' :: w -> v such that:

k x >>= (\y -> return (x, y))

= k x >>= (\y -> return (k' y, y))

25 / 28

Quasicompositionality

WFRT: Weak forward round-tripping

I comap f p is WFRT, if p is WFRT.

I return a is WFRT for all a

I (p >>= \a -> k a) is WFRT, if p is WFRT and
for all a, k a is WFRT, and k is an injective
arrow.

I Injectivity generalized to Kleisli arrows.

I k :: v -> m w is an injective arrow if there exists
a function k' :: w -> v such that:

k x >>= (\y -> return (x, y))

= k x >>= (\y -> return (k' y, y))

25 / 28

Quasicompositionality: example

I The function
(\ n -> replicateP n p)

:: Int -> Biparser [Char] [Char]

is an injective arrow, and length :: [Char] -> Int

is its sagittal inverse.

replicateP n p >>= (\xs -> return (n, xs))

= replicateP n p >>= (\xs -> return (length xs, xs))

26 / 28

Summary

I Monads for bidirectional programming: monadic
profunctors.

I Round-tripping decomposed into weak
round-tripping and a purification property.
I Only need to reason about a domain-

agnostic interpretation of the program.

I Problem in the parse-then-print round-trip:
generalized injectivity requirement.

I More in the paper: lenses and random
generators-predicates.

27 / 28

Summary

I Monads for bidirectional programming: monadic
profunctors.

I Round-tripping decomposed into weak
round-tripping and a purification property.
I Only need to reason about a domain-

agnostic interpretation of the program.

I Problem in the parse-then-print round-trip:
generalized injectivity requirement.

I More in the paper: lenses and random
generators-predicates.

27 / 28

Summary

I Monads for bidirectional programming: monadic
profunctors.

I Round-tripping decomposed into weak
round-tripping and a purification property.
I Only need to reason about a domain-

agnostic interpretation of the program.

I Problem in the parse-then-print round-trip:
generalized injectivity requirement.

I More in the paper: lenses and random
generators-predicates.

27 / 28

Summary

I Monads for bidirectional programming: monadic
profunctors.

I Round-tripping decomposed into weak
round-tripping and a purification property.
I Only need to reason about a domain-

agnostic interpretation of the program.

I Problem in the parse-then-print round-trip:
generalized injectivity requirement.

I More in the paper: lenses and random
generators-predicates.

27 / 28

Summary

I Monads for bidirectional programming: monadic
profunctors.

I Round-tripping decomposed into weak
round-tripping and a purification property.
I Only need to reason about a domain-

agnostic interpretation of the program.

I Problem in the parse-then-print round-trip:
generalized injectivity requirement.

I More in the paper: lenses and random
generators-predicates.

27 / 28

Conclusion

Future work:

I More practice, more features, e.g., backtracking,
lookahead in parsers?1

I How to enforce injectivity of arrows/functions
(maybe linear types)?

I A theory of bidirectional programs with
round-tripping properties? (Fwd m, Bwd n)

Thank you!

1https://github.com/Lysxia/unparse-attoparsec

28 / 28

https://github.com/Lysxia/unparse-attoparsec

Conclusion

Future work:

I More practice, more features, e.g., backtracking,
lookahead in parsers?1

I How to enforce injectivity of arrows/functions
(maybe linear types)?

I A theory of bidirectional programs with
round-tripping properties? (Fwd m, Bwd n)

Thank you!

1https://github.com/Lysxia/unparse-attoparsec

28 / 28

https://github.com/Lysxia/unparse-attoparsec

Conclusion

Future work:

I More practice, more features, e.g., backtracking,
lookahead in parsers?1

I How to enforce injectivity of arrows/functions
(maybe linear types)?

I A theory of bidirectional programs with
round-tripping properties? (Fwd m, Bwd n)

Thank you!

1https://github.com/Lysxia/unparse-attoparsec

28 / 28

https://github.com/Lysxia/unparse-attoparsec

Conclusion

Future work:

I More practice, more features, e.g., backtracking,
lookahead in parsers?1

I How to enforce injectivity of arrows/functions
(maybe linear types)?

I A theory of bidirectional programs with
round-tripping properties? (Fwd m, Bwd n)

Thank you!

1https://github.com/Lysxia/unparse-attoparsec

28 / 28

https://github.com/Lysxia/unparse-attoparsec

