## Composing bidirectional programs monadically

Li-yao Xia, ${ }^{1}$ Dominic Orchard, ${ }^{2}$ Meng Wang, ${ }^{3}$
${ }^{1}$ University of Pennsylvania
${ }^{2}$ University of Kent ${ }^{3}$ University of Bristol

## ESOP 2019, April 8

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Parsers - printers

| String |  | AST |
| :--- | :--- | :--- |
| $\backslash x \rightarrow \mathrm{x}$ | parse-> <br> <-print | Fun "x" (Var "x") |

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Parsers - printers

| String |  | AST |
| :--- | :--- | :--- |
| $\backslash x->\mathrm{x}$ | parse-> <br> <-print | Fun "x" (Var "x") |

- Lenses (getters - setters)

Source (Database)
View (Row)
$2 / 28$

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Parsers - printers

| String |  | AST |
| :--- | :--- | :--- |
| $\backslash x->\mathrm{x}$ | parse-> <br> <-print | Fun "x" (Var "x") |

Lenses (getters - setters)
Source (Database)
(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)
$2 / 28$

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Parsers - printers

String
\x -> x parse-> Fun "x" (Var "x") <-print

Lenses (getters - setters)

| Source (Database) |  | View (Row) |
| :--- | :--- | :--- |
| (Alita, 220) ; (Sechs, 2) | get-> | (Alita, 220) |
|  | $\downarrow$ |  |

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Parsers - printers

| String |  | AST |
| :--- | :--- | :--- |
| $\backslash x->\mathrm{x}$ | parse-> <br> <-print | Fun "x" (Var "x") |

Lenses (getters - setters)
Source (Database) View (Row)
(Alita, 220) ; (Sechs, 2) get-> (Alita, 220)
(Alita, 221) ; (Sechs, 2) <-set (Alita, 221)
Subject to "round-tripping laws".

## Composing bidirectional programs monadically

Pairs of programs in "opposite directions".

- Random generators - predicates

randomSortedList :: Prob [Int] isSortedList :: [Int] -> Bool

Composing bidirectional programs monadically
Pairs of programs in "opposite directions".

- Random generators - predicates randomSortedList :: Prob [Int] isSortedList :: [Int] -> Bool
- For random testing of invariants dropSorted :: Property -- Using QuickCheck dropSorted =
forAll randomSortedList ( $\backslash$ (xs :: [Int]) -> isSortedList (drop 1 xs)))

Composing bidirectional programs monadically
Pairs of programs in "opposite directions".

- Random generators - predicates
randomSortedList :: Prob [Int]
isSortedList :: [Int] -> Bool
- For random testing of invariants
dropSorted :: Property -- Using QuickCheck dropSorted =
forAll randomSortedList ( $\backslash$ (xs :: [Int]) -> isSortedList (drop 1 xs)))
"Round-trip":

$$
\begin{gathered}
\mathbb{P}(\text { randomSortedList }=[1,2,3])>0 \\
\text { isSortedList }[1,2,3]=\text { True }
\end{gathered}
$$

## Composing bidirectional programs monadically

General idea: same relation viewed in two directions.

Composing bidirectional programs monadically
General idea: same relation viewed in two directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single description?

Composing bidirectional programs monadically

- General idea: same relation viewed in two directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single description?
2. What round-tripping guarantees to expect?

Composing bidirectional programs monadically
General idea: same relation viewed in two directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single description?
2. What round-tripping guarantees to expect?

- forall v. parse (print v) = v
- Lens laws: get (set s v) = v
- Soundness/completeness of generators

Composing bidirectional programs monadically

- General idea: same relation viewed in two directions.

Basic plan of a talk on bidirectional programming:

1. How to obtain both directions from a single description?
2. What round-tripping guarantees to expect?

- forall v. parse (print v) = v
- Lens laws: get (set s v) = v
- Soundness/completeness of generators

Running example for this talk: parsers - printers.

## Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:


## Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:
- DSL as library (= EDSL).


## Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:
- DSL as library (= EDSL).
- Fitting within host language poses design challenges.


## Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:
- DSL as library (= EDSL).
- Fitting within host language poses design challenges.
"Round-tripping" properties usually preserved by combinators (compositionality). A more complicated story here.


## Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:
- DSL as library (= EDSL).
- Fitting within host language poses design challenges.
- "Round-tripping" properties usually preserved by combinators (compositionality). A more complicated story here.
- What combinators to choose?

Composing bidirectional programs monadically

- Present approach: combinators to compose bidirectional programs. Typical features:
- DSL as library (= EDSL).
- Fitting within host language poses design challenges.
- "Round-tripping" properties usually preserved by combinators (compositionality). A more complicated story here.
- What combinators to choose?
- We can try to adapt known abstractions.


## Monads

- A general interface to compose programs.
-- $M$ : : Type -> Type
(>>=) :: M a -> (a -> M b) -> M b
return : : a -> M a
-- + monad laws


## Monads

- A general interface to compose programs.
-- $M:$ Type -> Type
(>>=) :: M a $->(\mathrm{a}->\mathrm{M} \mathrm{b})->\mathrm{M} \mathrm{b}$
return : : a -> M a
-- + monad laws
- Example: monadic parser ( $\mathrm{M}=$ Parser) .
parseString :: Parser String -- String = [Char]
parseString = parseInt >>= ( $\backslash$ (n : : Int) ->
replicateM $n$ parseChar)
parseInt :: Parser Int
parseChar : : Parser Char
replicateM :: Int -> Parser a -> Parser [a]


## Monads, an unlikely candidate

- Monads (e.g., parsers) are covariant functors.
type Parser a = [Char] -> (a, [Char])
fmap :: (a -> b) -> Parser a -> Parser b
-- Definable from (>>=) and return


## Monads, an unlikely candidate

- Monads (e.g., parsers) are covariant functors.
type Parser a = [Char] -> (a, [Char])
fmap :: (a -> b) -> Parser a -> Parser b
-- Definable from (>>=) and return
- Printers are contravariant.
type Printer a = a -> [Char]
comap :: (b -> a) -> Printer a -> Printer b
-- can be defined


## Can a type be both covariant and contravariant?

```
fmap :: (a -> b) -> M a -> M b
comap :: (b -> a) -> M a -> M b
```

Can a type be both covariant and contravariant?
fmap :: (a -> b) -> M a $->M$ b
comap :: (b $->$ a) $->M$ a $->$ M b

1. No, it would be phantom: the definition of (M a) couldn't use a.

## Can a type be both covariant and contravariant?

```
fmap :: (a -> b) -> M a -> M b
comap :: (b -> a) -> M a -> M b
```

1. No, it would be phantom: the definition of ( M a) couldn't use a.
2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)
invmap :: (a <-> b) -> M a -> M b
(Popular approach in related work.)

## Can a type be both covariant and contravariant?

```
fmap :: (a -> b) -> M a -> M b
comap :: (b -> a) -> M a -> M b
```

1. No, it would be phantom: the definition of ( M a) couldn't use a.
2. No, but we can use an invariant type instead.
type (a <-> b) = (a -> b, b -> a)
invmap :: (a <-> b) -> M a -> M b
(Popular approach in related work.)
3. Yes, with a twist: profunctors.

## Profunctors

- Covariance, contravariance, pick two.


## Profunctors

- Covariance, contravariance, pick two.
-- P :: Type -> Type -> Type


## Profunctors

- Covariance, contravariance, pick two.

$$
\begin{aligned}
& -\mathrm{P}:: \text { Type -> Type -> Type } \\
& \text { fmap }::(\mathrm{a} \mathrm{->} \mathrm{b)} \mathrm{->} \mathrm{P} \mathrm{x} \mathrm{a} \mathrm{->} \mathrm{P} \mathrm{x} \mathrm{~b}
\end{aligned}
$$

## Profunctors

- Covariance, contravariance, pick two.

$$
\begin{aligned}
& --P:: \text { Type }->\text { Type }->\text { Type } \\
& \text { frap }::(\mathrm{a}->\mathrm{b})->P \times \mathrm{a} \rightarrow P \times \mathrm{b} \\
& \text { comp }:(\mathrm{b}->\mathrm{a}) \rightarrow \mathrm{P} \text { a y } \rightarrow P \text { b y }
\end{aligned}
$$

## Monadic profunctors

- Covariance, contravariance, pick two.
-- $P$ :: Type -> Type -> Type
frap :: (a -> b) -> P x a -> P x b
comap :: (b -> a) -> P a y -> P b y
- New mix: for any $x$, ( P x) is a monad (>>=) :: P x a -> (a -> P x b) -> P x b return :: a -> P x a


## Monadic profunctors

- Covariance, contravariance, pick two.
-- $P$ :: Type -> Type -> Type
fmap :: (a -> b) -> P x a -> P x b
comap :: (b -> a) -> P a y -> P b y
- New mix: for any $x,\left(\begin{array}{l}\text { x }\end{array}\right.$ ) is a monad
(>>=) :: P x a -> (a -> P x b) -> P x b return :: a -> P x a
-- Definable from (>>=) and return
fmap :: (a -> b) -> P x a -> P x b


## Monadic profunctors

- In summary, minimal definition:

$$
\begin{aligned}
& (\gg=):: \mathrm{P} \mathrm{x}->(\mathrm{a}->\mathrm{P} \mathrm{x} \mathrm{~b})->\mathrm{P} \times \mathrm{b} \\
& \text { return }:: \mathrm{a}->\mathrm{P} \mathrm{x} \mathrm{a} \\
& \text {-- forall } x \text {. Monad }(P x)
\end{aligned}
$$

comap :: (b -> a) -> P a y $\rightarrow \mathrm{P}$ b y

## Monadic profunctors

- In summary, minimal definition:

```
(>>=) :: P x a -> (a -> P x b) -> P x b
return :: a -> P x a
-- forall x. Monad (P x)
comap :: (b -> a) -> P a y -> P b y
```

- Take Monad, add one more type parameter and one more function, that's all we need for bidirectional programming.


## Monadic profunctors

- In summary, minimal definition:

```
(>>=) :: P x a -> (a -> P x b) -> P x b
return :: a -> P x a
-- forall x. Monad (P x)
comap :: (b -> a) -> P a y -> P b y
```

- Take Monad, add one more type parameter and one more function, that's all we need for bidirectional programming.
- This work: study properties of this simple interface.


## Parser monad (again)

parseString :: Parser String
parseString =

$$
\begin{aligned}
& \text { parseInt >>= (\n -> } \\
& \text { replicateM n parseChar) }
\end{aligned}
$$

-- assuming
parseInt :: Parser Int
parseChar :: Parser Char
replicateM :: Int -> Parser a -> Parser [a]

## Bidirectional parser profunctor monad

```
biparseString :: Biparser String String
biparseString =
    comap length biparseInt >>= (\n ->
    replicateP n biparseChar)
```

-- assuming
biparseInt :: Biparser Int Int
biparseChar : : Biparser Char Char
replicateP : : Int -> Biparser x a -> Biparser [x] [a]

## Bidirectional parser profunctor monad

```
biparseString :: Biparser String String
biparseString =
    comap length biparseInt >>= (\n ->
    replicateP n biparseChar)
```

-- assuming
biparseInt :: Biparser Int Int
biparseChar :: Biparser Char Char replicateP : : Int -> Biparser x a -> Biparser [x] [a]

- Both a parser and a printer.


## Bidirectional parser profunctor monad

-- $P$ :: Type -> Type -> Type

$$
\begin{aligned}
& \text { comap : }(\mathrm{y}->\mathrm{x})->\mathrm{P} \mathrm{x} \mathrm{a}->\mathrm{P} \mathrm{y} \mathrm{a} \\
& (\gg=):: \mathrm{P} \mathrm{x}->(\mathrm{a} \rightarrow \mathrm{P} \mathrm{x} \mathrm{~b})->\mathrm{P} \mathrm{x} \mathrm{~b} \\
& \text { return }:: \mathrm{a}->\mathrm{P} \mathrm{x} \mathrm{a} \\
& \text {-- i.e. forall x. Monad }(\mathrm{P} x)
\end{aligned}
$$

- Three monadic profunctors:


## Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type
comap :: (y -> x) -> P x a -> P y a (>>=) :: P x a -> (a -> P x b) -> P x b return :: a -> P x a
-- i.e., forall x. Monad (P x)

- Three monadic profunctors:
type Parser' x a = ([Char] -> (a, [Char])) -- Parser $a$


## Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type
comap :: (y -> x) -> P x a -> P y a
(>>=) :: P x a -> (a -> P x b) -> P x b
return :: a -> P x a
-- i.e., forall x. Monad (P x)

- Three monadic profunctors:
type Parser' x a = ([Char] -> (a, [Char])) -- Parser a
type Printer x a = (x -> ([Char], a))


## Bidirectional parser profunctor monad

-- P :: Type -> Type -> Type
comap :: (y -> x) -> P x a -> P y a
(>>=) :: P x a -> (a -> P x b) -> P x b
return :: a -> P x a
-- i.e., forall x. Monad (P x)

- Three monadic profunctors:
type Parser' x a = ([Char] -> (a, [Char])) -- Parser a
type Printer x a = (x -> ([Char], a))
type Biparser x a $=($ Parser' x a, Printer x a)
-- Parser-printer pairs


## A concrete example in detail

comap length biparseInt : : Biparser [Char] Int

## A concrete example in detail

comap length biparseInt : : Biparser [Char] Int

- As a parser:
parseInt :: Parser Int -- comap is erased


## A concrete example in detail

comap length biparseInt : : Biparser [Char] Int

- As a parser:

```
parseInt :: Parser Int -- comap is erased
```

- As a printer:

```
(\ s -> let n = length s in
    (printInt n, n))
    :: [Char] -> ([Char] , Int)
    -- Printer [Char] Int
    -- " ^ result, printed value
    -- " "context" around value to print
-- given
printInt :: Int -> [Char]
```


## A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a

A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a
type Parser' x a = [Char] -> (a, [Char])
type Parser' x a $=$ Fwd (State [Char]) x a -- same


## A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a
type Parser' x a = [Char] -> (a, [Char])
type Parser' $\mathrm{x} \mathrm{a}=$ Fwd (State [Char]) x a -- same
type Bwd n x a $=\mathrm{x} \rightarrow \mathrm{n} \mathrm{a}$


## A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a
type Parser' x a = [Char] -> (a, [Char])
type Parser' x a $=$ Fwd (State [Char]) x a -- same
type Bwd n x a = x $\rightarrow$ n a
type Printer x a $=\mathrm{x}$-> ([Char], a)
type Printer $\mathrm{x} \mathrm{a}=$ Bwd (Writer [Char]) x a -- same


## A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a
type Parser' x a = [Char] -> (a, [Char])
type Parser' $\mathrm{x} \mathrm{a}=$ Fwd (State [Char]) x a -- same
type Bwd n x a $=\mathrm{x}->\mathrm{n}$ a
type Printer $\mathrm{x} \mathrm{a}=\mathrm{x}->$ ([Char], a)
type Printer $\mathrm{x} \mathrm{a}=$ Bwd (Writer [Char]) x a -- same
type ( $\mathrm{p}: *: \mathrm{q}$ ) x a $=(\mathrm{p} \mathrm{x} \mathrm{a}, \mathrm{q} \times \mathrm{a})$
type Biparser x a = (Parser' $: *$ : Printer) x a


## A general recipe of profunctor monads

- "Forward" and "backward" profunctor monads.
type Fwd m x a = m a
type Parser' x a = [Char] -> (a, [Char])
type Parser' $\mathrm{x} \mathrm{a}=$ Fwd (State [Char]) x a -- same
type Bwd n x a $=\mathrm{x}->\mathrm{n}$ a
type Printer $\mathrm{x} \mathrm{a}=\mathrm{x}->$ ([Char], a)
type Printer $\mathrm{x} \mathrm{a}=$ Bwd (Writer [Char]) x a -- same
type ( $\mathrm{p}: *: \mathrm{q}$ ) $\mathrm{x} \mathrm{a}=(\mathrm{p} \mathrm{x} \mathrm{a}, \mathrm{q} \mathrm{x} \mathrm{a})$
type Biparser x a = (Parser' $: *$ : Printer) x a
- What relation between $m$ in Fwd $m$ and $n$ in Bwd $n$ ? (unsolved)


## Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a print :: Biparser a a -> a -> [Char]

## Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a print :: Biparser a a -> a -> [Char]
$>\mathrm{p}:$ : Biparser a a is forward round-tripping if parse p s = Just a $\quad$ print p a $=\mathrm{s}$

## Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a print : : Biparser a a -> a -> [Char]

- p :: Biparser a a is forward round-tripping if parse p s = Just a $\quad$ print p a = s
- p :: Biparser a a is backward round-tripping if print p a $=\mathrm{s} \quad->$ parse p s = Just a parse p (print p a) = Just a -- equivalently


## Round-tripping properties

parse :: Biparser a a -> [Char] -> Maybe a print : : Biparser a a -> a -> [Char]

- p :: Biparser a a is forward round-tripping if parse p s = Just a $\quad$ print $\mathrm{p} \mathrm{a}=\mathrm{s}$
- p :: Biparser a a is backward round-tripping if print p a $=\mathrm{s} \quad->$ parse p s = Just a parse p (print p a) = Just a -- equivalently
- Sadly, round-tripping (bwd or fwd) is not guaranteed by construction!
comap : : (y $->$ x) $->P$ x a $->P$ y a
(>>=) : : P x a $->(\mathrm{a}->\mathrm{P} x \mathrm{~b})$-> $\mathrm{P} x \mathrm{~b}$


## Verifying round-tripping properties

## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.


## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.
- Can we do better by exploiting the shared structure of biparsers?


## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.
- Can we do better by exploiting the shared structure of biparsers?
- Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).

## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.
- Can we do better by exploiting the shared structure of biparsers?
Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).
2. Find a property that covers the difference between weak and "real" round-tripping:

## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.
- Can we do better by exploiting the shared structure of biparsers?
Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).
2. Find a property that covers the difference between weak and "real" round-tripping:

- necessarily non-compositional,


## Verifying round-tripping properties

- Baseline, naive verification method: extract parser, extract printer, check that they match.
- Can we do better by exploiting the shared structure of biparsers?
Plan:

1. Weaken round-tripping to be compositional
(i.e., property guaranteed by construction).
2. Find a property that covers the difference between weak and "real" round-tripping:

- necessarily non-compositional,
- but hopefully "easier" to verify than real round-tripping.


## Backward round-tripping (print-then-parse)

- Recall backward round-tripping:

$$
\text { print } \mathrm{p} a=\mathrm{s} \quad->\quad \text { parse } \mathrm{p} \mathrm{~s}=\text { Just } \mathrm{a}
$$

## Backward round-tripping (print-then-parse)

- Recall backward round-tripping:

$$
\text { print } \mathrm{p} a=\mathrm{s} \quad->\quad \text { parse } \mathrm{p} \text { s = Just } a
$$

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char])
print' : : Biparser x a $->$ x $->$ ([Char], a)

## Backward round-tripping (print-then-parse)

- Recall backward round-tripping:

$$
\text { print } \mathrm{p} a=\mathrm{s} \quad->\quad \text { parse } \mathrm{p} \mathrm{~s}=\text { Just } \mathrm{a}
$$

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char]) print' : : Biparser x a $->$ x $->$ ([Char], a)

- Weak backward round-tripping:

$$
\begin{aligned}
& \text { print' } p x=(s, a) \\
& \quad->\text { parse' } p\left(s++s^{\prime}\right)=\text { Just }\left(a, s^{\prime}\right)
\end{aligned}
$$

## Backward round-tripping (print-then-parse)

- Recall backward round-tripping:

$$
\text { print } \mathrm{p} a=\mathrm{s} \quad \rightarrow \quad \text { parse } \mathrm{p} s=\text { Just } \mathrm{a}
$$

parse' :: Biparser x a -> [Char] -> Maybe (a, [Char]) print' :: Biparser x a -> x -> ([Char], a)

- Weak backward round-tripping:

$$
\begin{aligned}
& \text { print' } \mathrm{px}=(\mathrm{s}, \mathrm{a}) \\
& \rightarrow \text { parse' } \mathrm{p}\left(\mathrm{~s}++\mathrm{s}^{\prime}\right)=\operatorname{Just}\left(\mathrm{a}, \mathrm{~s}^{\prime}\right)
\end{aligned}
$$

- Compositional, i.e., holds by construction.


## Compositionality

WBRT: Weak backward round-tripping

- comap $\mathrm{f} p$ is WBRT, if p is WBRT.
- return a is WBRT for all a
( $p$ >>= \a -> $k$ a) is WBRT, if $p$ is WBRT and for all $a, k$ a is WBRT.


## Compositionality

WBRT: Weak backward round-tripping

- comap $\mathrm{f} p$ is WBRT, if p is WBRT.
- return a is WBRT for all a
- ( $\mathrm{p} \gg=\backslash \mathrm{a}->\mathrm{k}$ a) is WBRT, if p is WBRT and for all $\mathrm{a}, \mathrm{k}$ a is WBRT.

Only primitives then need to be checked:

- biparseChar is WBRT.


## Purification

- Example: printer component of biparseChar.
type Printer x a = (x $\rightarrow$ ([Char], a))
-- Printer Char Char
printChar :: Char -> ([Char], Char)
printChar $\mathrm{c}=([\mathrm{c}], \mathrm{c})$


## Purification

- Example: printer component of biparseChar.

```
type Printer x a = (x -> ([Char], a))
    -- Printer Char Char
printChar :: Char -> ([Char], Char)
printChar c = ([c], c)
```

- Key property: printer returns its input.


## Purification

- Example: printer component of biparseChar.

```
type Printer x a = (x -> ([Char], a))
```

-- Printer Char Char
printChar : : Char -> ([Char], Char)
printChar $c=([c], c)$

- Key property: printer returns its input.
-- "Pure projection"
projPrinter : : Printer x a -> (x -> a)
projPrinter $q$ x = let $\left(\_, a\right)=q x$ in $a$


## Purification

- Example: printer component of biparseChar.
type Printer x a = (x -> ([Char], a) )
-- Printer Char Char
printChar : : Char -> ([Char], Char)
printChar $c=([c], c)$
- Key property: printer returns its input.
-- "Pure projection"
projPrinter : : Printer $x$ a -> (x -> a)
projPrinter $q \times=$ let $\left(\_, a\right)=q x i n a$
$\rightarrow$ for all c:: Char, projPrinter printChar $c=c$ i.e., projPrinter printChar = id


## Purification

- Example: printer component of biparseChar.
type Printer x a = (x -> ([Char], a) )
-- Printer Char Char
printChar : : Char -> ([Char], Char)
printChar $c=([c], c)$
- Key property: printer returns its input.
-- "Pure projection"
projPrinter : : Printer $x$ a -> (x -> a)
projPrinter $q \times=$ let $\left(\_, a\right)=q x i n a$
$\rightarrow$ for all c:: Char, projPrinter printChar $c=c$ i.e., projPrinter printChar = id
- "printChar purifies to id."


## Purification

$$
\begin{aligned}
& \text {-- } \\
& \text { Let } P x \text { a }=(x->a) \\
& --\quad \text { it's a monad } \\
& -\quad \text { it's a profunctor } \\
& -\quad \text { it's a monadic profunctor }
\end{aligned}
$$

## Purification

-- Let $P x a=(x->a)$
-- it's a monad
-- it's a profunctor
-- it's a monadic profunctor
$\rightarrow$ There is a monadic profunctor morphism:
proj : : Biparser u a -> (u -> a)

## Purification

$$
\begin{aligned}
& --\quad \text { Let } P x \text { a }=(x->a) \\
& --\quad \text { it's a monad } \\
& --\quad \text { it's a profunctor } \\
& -\quad \text { it's a monadic profunctor }
\end{aligned}
$$

- There is a monadic profunctor morphism:
proj : : Biparser u a -> (u -> a)

$$
\begin{array}{ll}
\operatorname{proj}(\text { return } a) & =\operatorname{return} a \\
\operatorname{proj}(p \gg=\backslash a->k a) & =\operatorname{proj} p \gg=\backslash a->\operatorname{proj}(p a) \\
\operatorname{proj}(\operatorname{comap} f p) & =\operatorname{comap} f(\text { proj } p)
\end{array}
$$

## Purification

$$
\begin{aligned}
& --\quad \text { Let } P x \text { a }=(x->a) \\
& --\quad \text { it's a monad } \\
& --\quad \text { it's a profunctor } \\
& -\quad \text { it's a monadic profunctor }
\end{aligned}
$$

- There is a monadic profunctor morphism:
proj : : Biparser u a -> (u -> a)

$$
\begin{aligned}
& \text { proj (return a) } \quad \text { return a } \\
& \text { proj ( } p \gg=\backslash a->k a \text { ) }=\operatorname{proj} p \gg=\backslash a->\operatorname{proj}(p a) \\
& \text { proj (comap f p) } \quad=\text { comap f (proj p) } \\
& \text { proj biparseChar = (id :: Char -> Char) } \\
& \text { proj biparseInt = (id :: Int -> Int) }
\end{aligned}
$$

## Purification and backward round-tripping

proj : : Biparser u a -> (u -> a)

- Biparser p purifies to id: proj $\mathrm{p}=\mathrm{id}$


## Purification and backward round-tripping

```
proj :: Biparser u a -> (u -> a)
```

- Biparser p purifies to id: proj $\mathrm{p}=\mathrm{id}$
- Point: agnostic to parser-specific details (i.e., source string manipulations).


## Purification and backward round-tripping

```
proj :: Biparser u a -> (u -> a)
```

- Biparser p purifies to id: proj p = id
- Point: agnostic to parser-specific details (i.e., source string manipulations).
- Equational reasoning.


## Purification and backward round-tripping

```
proj :: Biparser u a -> (u -> a)
```

- Biparser p purifies to id: proj p = id
- Point: agnostic to parser-specific details (i.e., source string manipulations).
- Equational reasoning.
- Recall weak backward round-tripping:

$$
\begin{aligned}
& \text { print' } p x=(s, a) \\
& ->\text { parse' } p\left(s++s^{\prime}\right)=\operatorname{Just}\left(a, s^{\prime}\right)
\end{aligned}
$$

- Compositional, i.e., holds by construction.


## Purification and backward round-tripping

```
proj :: Biparser u a -> (u -> a)
```

- Biparser p purifies to id: proj $\mathrm{p}=\mathrm{id}$
- Point: agnostic to parser-specific details (i.e., source string manipulations).
- Equational reasoning.
- Recall weak backward round-tripping:

$$
\begin{aligned}
& \text { print' } \mathrm{p} x=(\mathrm{s}, \mathrm{a}) \\
& \quad \rightarrow \mathrm{parse} \mathrm{p}\left(\mathrm{~s}++\mathrm{s}^{\prime}\right)=\operatorname{Just}\left(\mathrm{a}, \mathrm{~s}^{\prime}\right)
\end{aligned}
$$

- Compositional, i.e., holds by construction.
- Weak backward round-tripping $\wedge$ purifies to id $\Longrightarrow$ backward round-tripping.

$$
\text { print } \mathrm{p} a=\mathrm{s} \quad \rightarrow \quad \text { parse } \mathrm{p} \mathrm{~s}=\text { Just } \mathrm{a}
$$

## Forward round-tripping (parse-then-print)

- Weak forward round-tripping

$$
\begin{aligned}
& \text { parse' p s = Just (a, s'') }-- \text { and } \\
& \text { print' p x }=\left(a, s^{\prime}\right) \\
& \quad->\quad s=s^{\prime}++s^{\prime \prime}
\end{aligned}
$$

## Forward round-tripping (parse-then-print)

- Weak forward round-tripping

$$
\begin{aligned}
& \text { parse' p s = Just (a, s'') -- and } \\
& \text { print' p x = (a, s') } \\
& \quad-\quad \text { s }=s^{\prime}++s^{\prime \prime}
\end{aligned}
$$

Quasicompositional: some side conditions to satisfy!?

## Forward round-tripping (parse-then-print)

- Weak forward round-tripping

$$
\begin{aligned}
& \text { parse' p s = Just (a, s'') -- and } \\
& \text { print' p x = (a, s') } \\
& \quad-\quad \text { ( } \mathrm{s}=\mathrm{s}^{\prime}++\mathrm{s}^{\prime \prime}
\end{aligned}
$$

- Quasicompositional: some side conditions to satisfy!?
- Weak forward round-tripping $\wedge$ purifies to id $\Longrightarrow$ forward round-tripping.


## Compositionality (recall)

WBRT: Weak backward round-tripping

- comap $f$ p is WBRT, if $p$ is WBRT.
- return a is WBRT for all a
( $p \gg=\backslash a->k$ a) is WBRT, if $p$ is WBRT and for all $a, k$ a is WBRT.


## Quasicompositionality

WFRT: Weak forward round-tripping

- comap $f$ p is WFRT, if $p$ is WFRT.
- return a is WFRT for all a
( $p \gg=\backslash a->k$ a) is WFRT, if $p$ is WFRT and for all $a, k$ a is WFRT, and $k$ is an injective arrow.


## Quasicompositionality

WFRT: Weak forward round-tripping

- comap $f$ p is WFRT, if $p$ is WFRT.
- return a is WFRT for all a
- ( $\mathrm{p} \gg=\backslash \mathrm{a}->\mathrm{k}$ a) is WFRT, if p is WFRT and for all $a, k$ a is WFRT, and $k$ is an injective arrow.
- Injectivity generalized to Kleisli arrows.


## Quasicompositionality

WFRT: Weak forward round-tripping

- comap $\mathrm{f} p$ is WFRT, if p is WFRT.
- return a is WFRT for all a
- ( $\mathrm{p} \gg=\backslash \mathrm{a}->\mathrm{k}$ a) is WFRT, if p is WFRT and for all $a, k$ a is WFRT, and $k$ is an injective arrow.
- Injectivity generalized to Kleisli arrows.
- k :: v $\rightarrow \mathrm{m}$ w is an injective arrow if there exists a function $\mathrm{k}^{\prime}::$ w $->$ v such that:

$$
\begin{aligned}
& \mathrm{k} \times \gg=(\backslash \mathrm{y} \rightarrow \operatorname{return}(\mathrm{x}, \mathrm{y})) \\
= & \mathrm{k} \times \gg=\left(\backslash \mathrm{y} \rightarrow \operatorname{return}\left(\mathrm{k}^{\prime} \mathrm{y}, \mathrm{y}\right)\right)
\end{aligned}
$$

## Quasicompositionality: example

- The function

$$
\begin{aligned}
& \text { (\ n -> replicateP n p) } \\
& : \text { : Int -> Biparser [Char] [Char] }
\end{aligned}
$$

is an injective arrow, and length :: [Char] -> Int is its sagittal inverse.

$$
\begin{aligned}
& \text { replicateP n p >>= ( } \backslash x s \text {-> return ( } \quad n, x s \text { ) }) \\
= & \text { replicateP n p >>= ( } \backslash x \text { s } \rightarrow \text { return (length xs, xs })
\end{aligned}
$$

## Summary

## Summary

Monads for bidirectional programming: monadic profunctors.

## Summary

Monads for bidirectional programming: monadic profunctors.

- Round-tripping decomposed into weak round-tripping and a purification property.
- Only need to reason about a domainagnostic interpretation of the program.


## Summary

Monads for bidirectional programming: monadic profunctors.

- Round-tripping decomposed into weak round-tripping and a purification property.
- Only need to reason about a domainagnostic interpretation of the program.
- Problem in the parse-then-print round-trip: generalized injectivity requirement.


## Summary

Monads for bidirectional programming: monadic profunctors.

- Round-tripping decomposed into weak round-tripping and a purification property.
- Only need to reason about a domainagnostic interpretation of the program.
- Problem in the parse-then-print round-trip: generalized injectivity requirement.
- More in the paper: lenses and random generators-predicates.


## Conclusion

Future work:

- More practice, more features, e.g., backtracking, lookahead in parsers? ${ }^{1}$
${ }^{1}$ https://github.com/Lysxia/unparse-attoparsec


## Conclusion

Future work:

- More practice, more features, e.g., backtracking, lookahead in parsers? ${ }^{1}$
- How to enforce injectivity of arrows/functions (maybe linear types)?
${ }^{1}$ https://github.com/Lysxia/unparse-attoparsec


## Conclusion

Future work:

- More practice, more features, e.g., backtracking, lookahead in parsers? ${ }^{1}$
- How to enforce injectivity of arrows/functions (maybe linear types)?
- A theory of bidirectional programs with round-tripping properties? (Fwd m, Bwd n)

[^0]
## Conclusion

Future work:

- More practice, more features, e.g., backtracking, lookahead in parsers? ${ }^{1}$
- How to enforce injectivity of arrows/functions (maybe linear types)?
- A theory of bidirectional programs with round-tripping properties? (Fwd m, Bwd n)


## Thank you!

${ }^{1}$ https://github.com/Lysxia/unparse-attoparsec


[^0]:    ${ }^{1}$ https://github.com/Lysxia/unparse-attoparsec

