
A Monadic Framework
for Bidirectional Programming

Motivation
▶ Two ways to run a program: avoids code duplication.
▶ Monads have expressiveness and readability:

they might make bidirectional programming easier.

Three types of bidir. transformations (BX)
▶ An invertible parser can be turned around into a printer.

data InvParser x a = InvParser
{ parse :: String -> (String, a)
, print :: x -> (String, a) }

▶ A lens lifts functions (a -> x) into updates on s.
data Lens s x a = Lens
{ get :: s -> a
, set :: x -> s -> (s, a) }

▶ A generable set consists of a random generator and a
membership function.
data GSet x a = GSet
{ generate :: Gen (Maybe a)
, predicate :: x -> Maybe a }

Monadic bidirectional transformations
▶ A pair of reader and writer transformations.
▶ Parameterized by an input type x and an output type a.

data MBX r w x a = MBX
{ reader :: r a
, writer :: x -> w a }

instance (Monad r, Monad w) => Monad (MBX r w x)

Common interpretation
▶ Readers map a source s to some view a.
▶ Writers take a value x containing a view a, and

instantiate a partially defined source s' such that
reading from any complete instantiation yields back a.
A printer “writes” a string by incrementally instantiating an
unknown prefix (_). The final string is obtained by substituting
the last unknown with the empty string "".

(_) > ("1" ++ _) > ("1 0" ++ _) > ("1 0 -" ++ _)
> ... > ("1 0 - - 2 - 3 - -" ++ _)

▶ We expect that every written view can be read back.
This is analogous to the PutGet lens law.

References
▶ Combinators for bidirectional tree transformations: A linguistic

approach to the view update problem. Foster et al. (POPL’05)
▶ Invertible Syntax Descriptions: Unifying Parsing and Pretty Printing.

Rendel and Ostermann. (Haskell’10)
▶ Applicative bidirectional programming with lenses. Matsuda and

Wang. (ICFP’15)
▶ Beginner’s Luck: A Language for Property-Based Generators.

Lampropoulos et al. (POPL’17)

Monadic profunctors (MP)
▶ MBXs aremonadic profunctors.
▶ A monadic profunctor is a monad,

return :: a -> p x a
(>>=) :: p x a -> (a -> p x b) -> p x b

▶ also a contravariant functor (cofunctor),

(=.) :: (y -> x) -> p x a -> p y a

▶ such that (f =.) is a monad morphism for all f.

> f =. return a = return a
> f =. (ma >>= (\a -> amb a))

= (f =. ma) >>= (\a -> f =. amb a)

Example: Parsing and printing trees
In the definition of a MBX like tree, every action is annotated
with its “location” in the final result. Erasing these annotations
in gray below reveals the code of a parser.

word :: InvParser String String
data Tree = L | Node Integer Tree Tree

tree :: InvParser Tree Tree
tree = do

w <- firstWord =. word
case w of
"-" -> return L
_ -> do l <- nodeLeft =. tree

r <- nodeRight =. tree
return (Node (read w) l r)

where firstWord L = "-"
firstWord (Node v _ _) = show v

example = Node 1 (Node 0 L L)
(Node 2 L (Node 3 L L))

output = "1 0 - - 2 - 3 - -"

> runPrinter (print tree example) = output
> runParser (parse tree) output = example
A more realistic example of invertible parser:
https://github.com/Lysxia/unparse-attoparsec.

BX xor MP
▶ BX but not MP: bijections.
▶ MP but not BX: “Profunctor HOAS”.

(https://www.schoolofhaskell.com/user/edwardk/phoas)

Future directions
▶ Refine MPs, e.g., as cofunctors in a category of arrows.
▶ Interpretation still needs adjustment for GSet.
▶ How to derive reader from writer (or conversely).

Li-yao Xia Meng Wang (supervisor)
li-yao.xia@ens.fr, M.W.Wang@kent.ac.uk École Normale Supérieure and University of Kent

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

https://github.com/Lysxia/unparse-attoparsec
https://www.schoolofhaskell.com/user/edwardk/phoas

