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A Monadic Framework

for Bidirectional Programming

Motivation

Two ways to run a program: avoids code duplication.

Monads have expressiveness and readability:
they might make bidirectional programming easier.

Three types of bidir. transformations (BX)

An invertible parser can be turned around into a printer.

data InvParser x a = InvParser
{ parse :: String -> (String, a)
, print :: x -> (String, a) }

A lens lifts functions (a -> x) into updates on s.

data Lens s x a = Lens
{ get :: s > a
, set :: x -=> s -> (s, a) }

A generable set consists of a random generator and a
membership function.

data GSet x a = GSet
{ generate :: Gen (Maybe a)
, predicate :: x -> Maybe a }

Monadic bidirectional transformations

A pair of reader and writer transformations.
Parameterized by an input type x and an output type a.

data MBX r w x a = MBX
{ reader :: r a
, writer :: x -> w a }
instance (Monad r, Monad w) => Monad (MBX r w Xx)

Common interpretation

Readers map a source s to some view a.

Writers take a value x containing a view a, and
instantiate a partially defined source s' such that
reading from any complete instantiation yields back a.

A printer “writes” a string by incrementally instantiating an
unknown prefix (_). The final string is obtained by substituting

nn

the last unknown with the empty string "".
(_) > (Il1ll ++ _) > ("1 @" ++ _) > (H1 @ _n ++ _)
> ...> ("M 0 --2-3--"++ )

We expect that every written view can be read back.

This is analogous to the PutGet lens law.
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Monadic profunctors (MP)

MBXs are monadic profunctors.
A monadic profunctor is a monad,

return :: a —> p X a
(>>=) :: pxa->(a->pxb)->pxb

also a contravariant functor (cofunctor),
(=) :: (y >XxX) >pxa->pya
such that (f =.) is a monad morphism for all f.

> f =. return a . return a
>f =. ( ma >>= (\a -> amb a))
= (f =. ma) >>= (\a -> f =. amb a)

Example: Parsing and printing trees

In the definition of a MBX like tree, every action is annotated
with its “location” in the final result. Erasing these annotations
in gray below reveals the code of a parser.

word :: InvParser String String
data Tree = L | Node Integer Tree Tree

tree :: InvParser Tree Tree
tree = do
w <- firstWord =. word
case w of
"=" => return L
> do 1 <- nodelLeft =. tree
r <- nodeRight =. tree

return (Node (read w) 1 r)
where firstWord L = "-"
firstWord (Node v _ _) = show v

example = Node 1 (Node 0 L L)
(Node 2 L (Node 3 L L))
output ="10 - - 2 - 3 - ="

> runPrinter (print tree example) = output

> runParser (parse tree) output example

A more realistic example of invertible parser:
https://github.com/Lysxia/unparse-attoparsec.

BX xor MP

BX but not MP: bijections.

MP but not BX: “Profunctor HOAS”.
(https://www.schoolofhaskell.com/user/edwardk/phoas)

Future directions

Refine MPs, e.g., as cofunctors in a category of arrows.
Interpretation still needs adjustment for GSet.
How to derive reader from writer (or conversely).
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