li-yao.xia@ens.fr, M.W.Wang@kent.ac.uk

A Monadic Framework

for Bidirectional Programming

Motivation

Two ways to run a program: avoids code duplication.

Monads have expressiveness and readability:
they might make bidirectional programming easier.

Three types of bidir. transformations (BX)

An invertible parser can be turned around into a printer.

data InvParser x a = InvParser
{ parse :: String -> (String, a)
, print :: x -> (String, a) }

A lens lifts functions (a -> x) into updates on s.

data Lens s x a = Lens
{ get :: s > a
, set :: x -=> s -> (s, a) }

A generable set consists of a random generator and a
membership function.

data GSet x a = GSet
{ generate :: Gen (Maybe a)
, predicate :: x -> Maybe a }

Monadic bidirectional transformations

A pair of reader and writer transformations.
Parameterized by an input type x and an output type a.

data MBX r w x a = MBX
{ reader :: r a
, writer :: x -> w a }
instance (Monad r, Monad w) => Monad (MBX r w Xx)

Common interpretation

Readers map a source s to some view a.

Writers take a value x containing a view a, and
instantiate a partially defined source s' such that
reading from any complete instantiation yields back a.

A printer “writes” a string by incrementally instantiating an
unknown prefix (_). The final string is obtained by substituting

nn

the last unknown with the empty string "".
(_) > (Il1ll ++ _) > ("1 @" ++ _) > (H1 @ _n ++ _)
> ...> ("M 0 --2-3--"++)

We expect that every written view can be read back.

This is analogous to the PutGet lens law.

References

Combinators for bidirectional tree transformations: A linguistic
approach to the view update problem. Foster et al. (POPL’05)

Invertible Syntax Descriptions: Unifying Parsing and Pretty Printing.
Rendel and Ostermann. (Haskell’10)

Applicative bidirectional programming with lenses. Matsuda and
Wang. (ICFP’15)

Beginner’s Luck: A Language for Property-Based Generators.
Lampropoulos et al. (POPL’17)

Li-yao Xia Meng Wang (supervisor)

Monadic profunctors (MP)

MBXs are monadic profunctors.
A monadic profunctor is a monad,

return :: a —> p X a
(>>=) :: pxa->(a->pxb)->pxb

also a contravariant functor (cofunctor),
(=) :: (y >XxX) >pxa->pya
such that (f =.) is a monad morphism for all f.

> f =. return a . return a
>f =. (ma >>= (\a -> amb a))
= (f =. ma) >>= (\a -> f =. amb a)

Example: Parsing and printing trees

In the definition of a MBX like tree, every action is annotated
with its “location” in the final result. Erasing these annotations
in gray below reveals the code of a parser.

word :: InvParser String String
data Tree = L | Node Integer Tree Tree

tree :: InvParser Tree Tree
tree = do
w <- firstWord =. word
case w of
"=" => return L
> do 1 <- nodelLeft =. tree
r <- nodeRight =. tree

return (Node (read w) 1 r)
where firstWord L = "-"
firstWord (Node v _ _) = show v

example = Node 1 (Node 0 L L)
(Node 2 L (Node 3 L L))
output ="10 - - 2 - 3 - ="

> runPrinter (print tree example) = output

> runParser (parse tree) output example

A more realistic example of invertible parser:
https://github.com/Lysxia/unparse-attoparsec.

BX xor MP

BX but not MP: bijections.

MP but not BX: “Profunctor HOAS”.
(https://www.schoolofhaskell.com/user/edwardk/phoas)

Future directions

Refine MPs, e.g., as cofunctors in a category of arrows.
Interpretation still needs adjustment for GSet.
How to derive reader from writer (or conversely).

University of

Kent

ECOLE NORMALE
SUPERIEURE

Ecole Normale Supérieure and University of Kent

https://github.com/Lysxia/unparse-attoparsec
https://www.schoolofhaskell.com/user/edwardk/phoas

